Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- URL: http://arxiv.org/abs/2501.15572v1
- Date: Sun, 26 Jan 2025 15:57:44 GMT
- Title: Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- Authors: Mahshid shiri, Chandra Bortolotto, Alessandro Bruno, Alessio Consonni, Daniela Maria Grasso, Leonardo Brizzi, Daniele Loiacono, Lorenzo Preda,
- Abstract summary: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images.
This study introduces a novel memory-efficient GAN architecture, incorporating Conditional Random Fields (CRFs) to generate high-resolution 3D medical images.
- Score: 35.858837946090674
- License:
- Abstract: Introduction: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence (AI) systems. This study introduces a novel memory-efficient GAN architecture, incorporating Conditional Random Fields (CRFs) to generate high-resolution 3D medical images and evaluates its performance against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: The CRF-GAN was trained using the open-source lung CT LUNA16 dataset. The architecture was compared to HA-GAN through a quantitative evaluation, using Frechet Inception Distance (FID) and Maximum Mean Discrepancy (MMD) metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, in order to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID (0.047 vs. 0.061) and MMD (0.084 vs. 0.086) scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN with a p-value of 1.93e-05. Additionally, CRF-GAN demonstrated 9.34% lower memory usage at 256 resolution and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. Computational power and time saved can be used to improve the spatial resolution and anatomical accuracy of generated images, which is still a critical factor limiting their direct clinical applicability.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Robust deep learning for eye fundus images: Bridging real and synthetic data for enhancing generalization [0.8599177028761124]
This work compares ten different GAN architectures to generate synthetic eye-fundus images with and without AMD.
StyleGAN2 reached the lowest Frechet Inception Distance (166.17), and clinicians could not accurately differentiate between real and synthetic images.
The accuracy rates were 82.8% for the test set and 81.3% for the STARE dataset, demonstrating the model's generalizability.
arXiv Detail & Related papers (2022-03-25T18:42:20Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
Age-related macular degeneration (AMD) is the most common cause of blindness in developed countries, especially in people over 60 years of age.
Recent developments in deep learning have provided a unique opportunity for the development of fully automated diagnosis frameworks.
We propose a multi-scale convolutional neural network (CNN) capable of distinguishing pathologies using receptive fields with various sizes.
arXiv Detail & Related papers (2021-10-06T18:20:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.