論文の概要: Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- arxiv url: http://arxiv.org/abs/2501.15572v2
- Date: Sun, 09 Mar 2025 09:46:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:42:55.629894
- Title: Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
- Title(参考訳): 記憶効率」な合成3D合成逆境ネットワーク(gan)の最先端における臨床評価 : 胸部CTによる検討
- Authors: Mahshid Shiri, Chandra Bortolotto, Alessandro Bruno, Alessio Consonni, Daniela Maria Grasso, Leonardo Brizzi, Daniele Loiacono, Lorenzo Preda,
- Abstract要約: GAN(Generative Adversarial Networks)は、医用画像の生成に利用されている。
本研究では,高分解能な3次元医用画像を生成するために,条件付ランダムフィールド(CRF)を取り入れた新しいメモリ効率のGANアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 35.858837946090674
- License:
- Abstract: Introduction: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence (AI) systems. This study introduces a novel memory-efficient GAN architecture, incorporating Conditional Random Fields (CRFs) to generate high-resolution 3D medical images and evaluates its performance against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: The CRF-GAN was trained using the open-source lung CT LUNA16 dataset. The architecture was compared to HA-GAN through a quantitative evaluation, using Frechet Inception Distance (FID) and Maximum Mean Discrepancy (MMD) metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, in order to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID (0.047 vs. 0.061) and MMD (0.084 vs. 0.086) scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN with a p-value of 1.93e-05. Additionally, CRF-GAN demonstrated 9.34% lower memory usage at 256 resolution and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. Computational power and time saved can be used to improve the spatial resolution and anatomical accuracy of generated images, which is still a critical factor limiting their direct clinical applicability.
- Abstract(参考訳): はじめに、GAN(Generative Adversarial Networks)は、人工知能(AI)システムのトレーニングのための注釈付きデータの致命的な不足に対処するため、合成医療画像の生成にますます利用されている。
本研究では,高分解能な3次元医用画像を生成するために条件付ランダムフィールド(CRF)を導入し,その性能を最先端階層型GANモデルに対して評価する,新しいメモリ効率のGANアーキテクチャを提案する。
材料と方法: CRF-GANはオープンソースの肺CT LUNA16データセットを使用して訓練された。
このアーキテクチャは、Frechet Inception Distance (FID) とMaximum Mean Discrepancy (MMD) のメトリクスを用いて定量的評価を行い、12人の居住放射線学者のプールで完了した2つの代替的強制選択 (2AFC) テストを通じて定性評価を行った。
結果: CRF-GANは低いFID(0.047 vs. 0.061)とMDD(0.084 vs. 0.086)でHA-GANより優れ,画像の忠実度が向上した。
2AFC試験では、HA-GANが生成した画像よりもCRF-Ganが生成した画像が1.93e-05のp値で有意に優先された。
さらに、CRF-GANは256の解像度で9.34%のメモリ使用率を示し、最大14.6%の高速化を実現した。
考察: CRF-GANモデルでは, メモリ効率が良く, 高速でありながら, 従来のモデルよりも低品質の高解像度な3次元医用画像を生成することができた。
計算能力と保存時間は、生成した画像の空間的解像度と解剖学的精度を改善するために利用することができる。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
本稿では、畳み込みニューラルネットワークと視覚変換器の長所を利用する革新的なモデルを提案する。
ビデオ中の物体検出にインスパイアされた各3次元CT画像をビデオとして扱い、個々のスライスをフレームとして、肺結節をオブジェクトとして扱い、時系列アプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-10-05T07:48:55Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Robust deep learning for eye fundus images: Bridging real and synthetic data for enhancing generalization [0.8599177028761124]
この研究は、合成眼底画像を生成するために10の異なるGANアーキテクチャをAMDなしで比較する。
StyleGAN2は最も低いFrechet Inception Distance(166.17)に達し、臨床医は実際の画像と合成画像とを正確に区別できなかった。
精度はテストセットで82.8%、STAREデータセットで81.3%であり、モデルの一般化可能性を示している。
論文 参考訳(メタデータ) (2022-03-25T18:42:20Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
加齢関連黄斑変性症(AMD)は、先進国、特に60歳以上の人々において、視覚障害の最も一般的な原因である。
近年のディープラーニングの発展は、完全に自動化された診断フレームワークの開発にユニークな機会を与えている。
様々な大きさの受容場を用いて病理を識別できる多スケール畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2021-10-06T18:20:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。