論文の概要: Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
- arxiv url: http://arxiv.org/abs/2501.15585v1
- Date: Sun, 26 Jan 2025 16:21:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:58.335195
- Title: Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
- Title(参考訳): 双子の遷移と競合する関心 : 人工知能と持続可能性知覚インベントリ(AISPI)の検証
- Authors: Annika Bush,
- Abstract要約: 本稿では,人工知能と持続可能性知覚インベントリ(AISPI)の開発と検証について述べる。
この13イテムは、個人がAIの進歩と環境の持続可能性の関係をどう見ているかを測定する。
本研究は,AIと持続可能性の関係において,個人がシナジーと緊張の両方を同時に認識できることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As artificial intelligence (AI) and sustainability initiatives increasingly intersect, understanding public perceptions of their relationship becomes crucial for successful implementation. However, no validated instrument exists to measure these specific perceptions. This paper presents the development and validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI), a novel 13-item instrument measuring how individuals view the relationship between AI advancement and environmental sustainability. Through factor analysis (N=105), we identified two distinct dimensions: Twin Transition and Competing Interests. The instrument demonstrated strong reliability (alpha=.89) and construct validity through correlations with established measures of AI and sustainability attitudes. Our findings suggest that individuals can simultaneously recognize both synergies and tensions in the AI-sustainability relationship, offering important implications for researchers and practitioners working at this critical intersection. This work provides a foundational tool for future research on public perceptions of AI's role in sustainable development.
- Abstract(参考訳): 人工知能(AI)とサステナビリティイニシアチブがますます交差するにつれて、それらの関係に対する大衆の認識を理解することが、実装の成功に不可欠である。
しかし、これらの特定の知覚を測定するための検証された手段は存在しない。
本稿では,AIの進歩と環境持続可能性の関係を個人がどのように見るかを測定する,新しい13項目のAIと持続可能性知覚インベントリ(AISPI)の開発と検証について述べる。
因子分析 (N=105) により, 双子遷移と競合興味の2つの異なる次元を同定した。
この装置は信頼性が強く(alpha=.89)、AIの確立した尺度と持続可能性姿勢との相関による妥当性の構築を行った。
以上の結果から,AI-サステナビリティ関係における相乗効果と緊張感を同時に認識できることが示唆された。
この研究は、持続可能な開発におけるAIの役割に対する公衆の認識に関する将来の研究の基盤となるツールを提供する。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Complementarity in Human-AI Collaboration: Concept, Sources, and Evidence [6.571063542099526]
我々は相補性の概念を開発し、その理論的ポテンシャルを定式化する。
情報と能力の非対称性を相補性の2つの主要な源とみなす。
我々の研究は、意思決定における人間とAIの相補性の包括的な理論的基盤を提供する。
論文 参考訳(メタデータ) (2024-03-21T07:27:17Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Broadening the perspective for sustainable AI: Comprehensive
sustainability criteria and indicators for AI systems [0.0]
本稿では,「持続可能なAI」に対する包括的視点の要求の実証に向けての一歩を踏み出す。
SCAIS Frameworkは、持続可能なAIと67の指標のための19の持続可能性基準を含んでいる。
論文 参考訳(メタデータ) (2023-06-22T18:00:55Z) - Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis [0.0]
本稿では,人工知能(AI)技術の相互接続性と相互依存性について述べる。
異なる時間窓を通して技術を分析し、その重要性を定量化することで、AIのランドスケープを形成する重要なコンポーネントに関する重要な洞察を明らかにしました。
論文 参考訳(メタデータ) (2023-04-20T18:37:11Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
人工知能(AI)システムのロバスト性はいまだ解明されておらず、大規模な採用を妨げる重要な問題となっている。
本稿では,基本的・応用的両面から文献を整理・記述する3つの概念を紹介する。
我々は、人間が提供できる必要な知識を考慮して、AIの堅牢性を評価し、向上する上で、人間の中心的な役割を強調します。
論文 参考訳(メタデータ) (2022-10-17T10:00:51Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
我々は、AIの持続可能性問題に対処できる機械学習アプローチの大きなトレンドについてレビューする。
我々は、既存の研究の大きな限界を強調し、次世代の持続可能なAI技術を開発するための潜在的研究課題と方向性を提案する。
論文 参考訳(メタデータ) (2022-05-08T09:38:35Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。