論文の概要: A Machine Learning Approach to Automatic Fall Detection of Combat Soldiers
- arxiv url: http://arxiv.org/abs/2501.15655v1
- Date: Sun, 26 Jan 2025 19:31:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:59:55.090104
- Title: A Machine Learning Approach to Automatic Fall Detection of Combat Soldiers
- Title(参考訳): コンバット兵士の自動転倒検出のための機械学習手法
- Authors: Leandro Soares, Rodrigo Parracho, Gustavo Venturini, José Gomes, Jonathan Efigenio, Pablo Rangel, Pedro Gonzalez, Joel dos Santos, Diego Brandão, Eduardo Bezerra,
- Abstract要約: 本稿では,ブラジル海軍の「未来兵」プロジェクトの範囲内で実施される研究について述べる。
このシステムは、兵士を不活化させ、重度の出血を招きかねない負傷を識別するカジュアルティ検出システムの開発に焦点を当てている。
このデータは、1D Convolutional Neural Networks(CNN1D)のトレーニングに使われ、致命的な怪我による転倒を正確に分類することを目的としている。
- 参考スコア(独自算出の注目度): 0.7968706282619793
- License:
- Abstract: Military personnel and security agents often face significant physical risks during conflict and engagement situations, particularly in urban operations. Ensuring the rapid and accurate communication of incidents involving injuries is crucial for the timely execution of rescue operations. This article presents research conducted under the scope of the Brazilian Navy's ``Soldier of the Future'' project, focusing on the development of a Casualty Detection System to identify injuries that could incapacitate a soldier and lead to severe blood loss. The study specifically addresses the detection of soldier falls, which may indicate critical injuries such as hypovolemic hemorrhagic shock. To generate the publicly available dataset, we used smartwatches and smartphones as wearable devices to collect inertial data from soldiers during various activities, including simulated falls. The data were used to train 1D Convolutional Neural Networks (CNN1D) with the objective of accurately classifying falls that could result from life-threatening injuries. We explored different sensor placements (on the wrists and near the center of mass) and various approaches to using inertial variables, including linear and angular accelerations. The neural network models were optimized using Bayesian techniques to enhance their performance. The best-performing model and its results, discussed in this article, contribute to the advancement of automated systems for monitoring soldier safety and improving response times in engagement scenarios.
- Abstract(参考訳): 軍人や治安部隊はしばしば紛争や戦闘の状況、特に都市部での作戦において重大な物理的リスクに直面している。
救助活動のタイムリーな実行には、負傷に伴う事故の迅速かつ正確なコミュニケーションを確保することが不可欠である。
本稿では,ブラジル海軍の「未来の兵士」プロジェクトの範囲内で実施された研究について述べる。
この研究は特に、低圧性出血性ショックなどの致命的な怪我を示す兵士の転倒の検出に対処している。
公開されているデータセットを生成するために、スマートウォッチとスマートフォンをウェアラブルデバイスとして使用し、シミュレーションフォールを含むさまざまな活動中に兵士から慣性データを収集しました。
このデータは、1D Convolutional Neural Networks(CNN1D)のトレーニングに使われ、致命的な怪我による転倒を正確に分類することを目的としている。
センサ配置(手首と質量の中心付近)と,線形および角加速度を含む慣性変数を用いた様々なアプローチについて検討した。
ニューラルネットワークモデルはベイジアン手法を用いて最適化され、性能が向上した。
本稿では、兵士の安全を監視し、エンゲージメントシナリオにおける応答時間を改善する自動システムの進歩に寄与する。
関連論文リスト
- Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
本研究では,大小の畳み込みニューラルネットワークとゲートリカレントユニットを組み合わせたアンサンブルモデルを提案する。
提案したモデルは、それぞれ92.54%、96.13%、94.26%のリコール、精度、Fスコアを達成する。
論文 参考訳(メタデータ) (2023-04-13T08:30:46Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Wild Patterns Reloaded: A Survey of Machine Learning Security against
Training Data Poisoning [32.976199681542845]
我々は、機械学習における中毒攻撃と防御の包括的体系化を提供する。
私たちはまず、現在の脅威モデルと攻撃を分類し、それに従って既存の防衛を組織化します。
我々は、我々の体系化は、他のデータモダリティに対する最先端の攻撃や防御も含んでいると論じている。
論文 参考訳(メタデータ) (2022-05-04T11:00:26Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
対人訓練は,ノルム有界摂動に耐性のあるディープラーニングモデルを訓練する有効な方法である。
敵訓練により得られたニューラルコントローラが3種類の欠陥を受けることを理論的および実験的に示す。
この結果から, ロボット学習にはまだ対応できていないことが示唆された。
論文 参考訳(メタデータ) (2021-03-15T07:51:31Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。