論文の概要: Z-Stack Scanning can Improve AI Detection of Mitosis: A Case Study of Meningiomas
- arxiv url: http://arxiv.org/abs/2501.15743v1
- Date: Mon, 27 Jan 2025 03:09:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:54:48.528814
- Title: Z-Stack Scanning can Improve AI Detection of Mitosis: A Case Study of Meningiomas
- Title(参考訳): Z-Stack ScanningはミトコンドリアのAI検出を改善する:髄膜腫の1例
- Authors: Hongyan Gu, Ellie Onstott, Wenzhong Yan, Tengyou Xu, Ruolin Wang, Zida Wu, Xiang 'Anthony' Chen, Mohammad Haeri,
- Abstract要約: Zスタックスキャン(Z-stack scanning)は、ガラススライドのz軸に沿って複数の焦点面を撮像する、新しい全スライドイメージング技術である。
髄膜腫のAIミトーシス検出におけるz-stackスキャニングの効果について検討した。
- 参考スコア(独自算出の注目度): 14.202121630096826
- License:
- Abstract: Z-stack scanning is an emerging whole slide imaging technology that captures multiple focal planes alongside the z-axis of a glass slide. Because z-stacking can offer enhanced depth information compared to the single-layer whole slide imaging, this technology can be particularly useful in analyzing small-scaled histopathological patterns. However, its actual clinical impact remains debated with mixed results. To clarify this, we investigate the effect of z-stack scanning on artificial intelligence (AI) mitosis detection of meningiomas. With the same set of 22 Hematoxylin and Eosin meningioma glass slides scanned by three different digital pathology scanners, we tested the performance of three AI pipelines on both single-layer and z-stacked whole slide images (WSIs). Results showed that in all scanner-AI combinations, z-stacked WSIs significantly increased AI's sensitivity (+17.14%) on the mitosis detection with only a marginal impact on precision. Our findings provide quantitative evidence that highlights z-stack scanning as a promising technique for AI mitosis detection, paving the way for more reliable AI-assisted pathology workflows, which can ultimately benefit patient management.
- Abstract(参考訳): Zスタックスキャン(Z-stack scanning)は、ガラススライドのz軸に沿って複数の焦点面を撮像する、新しい全スライドイメージング技術である。
z-stackingは、単層全スライド画像と比較して深度情報を高めることができるため、この技術は、特に小規模の病理組織学的パターンを分析するのに有用である。
しかし、その実際の臨床効果は相変わらず議論されている。
そこで我々は,z-stackスキャニングが髄膜腫のAIミトーシス検出に及ぼす影響について検討した。
同セットのHematoxylinとEosin meningiomaガラススライドを3種類のデジタル病理スキャナーでスキャンし、単層およびzスタックの全スライド画像(WSI)で3つのAIパイプラインの性能を試験した。
その結果、すべてのスキャナーとAIの組み合わせにおいて、zスタッキングされたWSIはAIのミトーシス検出に対する感度(+17.14%)を著しく増加させ、精度に限界的な影響しか与えなかった。
我々の研究は、z-stackスキャニングをAIミトーシス検出の有望なテクニックとして強調する定量的証拠を提供し、より信頼性の高いAI支援の病理ワークフローへの道を開くことで、最終的には患者の管理に役立てることができる。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AI-based association analysis for medical imaging using latent-space
geometric confounder correction [6.488049546344972]
複数の共同設立者に対する意味的特徴解釈とレジリエンスを強調するAI手法を提案する。
このアプローチのメリットは,2次元合成データセットから共同創設者のいない特徴を抽出すること,出生前アルコール暴露と幼児の顔面形状との関連性を検討すること,の3つのシナリオで検証されている。
その結果, 共同設立者の影響を効果的に低減し, 共同設立団体の設立を減らした。
論文 参考訳(メタデータ) (2023-10-03T16:09:07Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Maximum Mean Discrepancy Kernels for Predictive and Prognostic Modeling
of Whole Slide Images [1.418033127602866]
コンピュータ病理学では、患者から採取したデジタルスキャンされた組織サンプルの全体スライド画像(WSI)は、サイズが複数ギガピクセルである。
カーネル最大化平均離散性(MMD)分析に基づく新しい戦略を,WSI間のペアの類似性を決定するために検討する。
この研究は、計算病理学における予測的および予測的タスクにWSIレベルのカーネルを適用するためのさらなる道を開くと信じている。
論文 参考訳(メタデータ) (2023-01-23T18:47:41Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Mind the Gap: Scanner-induced domain shifts pose challenges for
representation learning in histopathology [6.309771474997404]
自己教師付き事前トレーニングは、腫瘍セグメンテーションの下流タスクにおいて、スキャナによるドメインシフトを克服するために使用することができる。
自己教師付き事前学習が様々なスキャナー表現の整列に成功し、興味深いことに、下流タスクに限られた利益をもたらすことが示される。
論文 参考訳(メタデータ) (2022-11-29T12:16:39Z) - Robust machine learning segmentation for large-scale analysis of
heterogeneous clinical brain MRI datasets [1.0499611180329802]
異種臨床データセットの堅牢な解析を可能にするAIセグメンテーションスイートであるSynthSeg+を提案する。
具体的には、全脳セグメンテーションに加えて、SynthSeg+は皮質パーセレーション、頭蓋内体積推定、欠陥セグメンテーションの自動検出も行う。
われわれはSynthSeg+を14,000スキャンの老化研究を含む7つの実験で実証し、より高品質なデータで観測された萎縮パターンを正確に再現した。
論文 参考訳(メタデータ) (2022-09-05T16:09:24Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
我々は、英国バイオバンクの2万名以上の被験者のデータセットを使用し、全体Dixon法磁気共鳴法(MR)スキャンとデュアルエネルギーX線吸収率法(DXA)スキャンを併用した。
マルチモーダル画像マッチングコントラストフレームワークを導入し、同一対象の異なるモダリティスキャンを高精度にマッチングすることができる。
適応がなければ、この対照的なトレーニングステップで学習した対応が、自動クロスモーダルスキャン登録の実行に利用できることを示す。
論文 参考訳(メタデータ) (2021-07-14T12:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。