論文の概要: Formal Verification of Markov Processes with Learned Parameters
- arxiv url: http://arxiv.org/abs/2501.15767v1
- Date: Mon, 27 Jan 2025 04:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:51.547148
- Title: Formal Verification of Markov Processes with Learned Parameters
- Title(参考訳): 学習パラメータによるマルコフ過程の形式的検証
- Authors: Muhammad Maaz, Timothy C. Y. Chan,
- Abstract要約: 幅広い機械学習モデルに対して,マルコフ連鎖の性質を検証することはバイリニアプログラムとして定式化できることを示す。
計算実験により,本手法は最先端の解法よりも最大100倍高速に大域的最適性を解けることを示した。
- 参考スコア(独自算出の注目度): 2.5694725194040804
- License:
- Abstract: We introduce the problem of formally verifying properties of Markov processes where the parameters are the output of machine learning models. Our formulation is general and solves a wide range of problems, including verifying properties of probabilistic programs that use machine learning, and subgroup analysis in healthcare modeling. We show that for a broad class of machine learning models, including linear models, tree-based models, and neural networks, verifying properties of Markov chains like reachability, hitting time, and total reward can be formulated as a bilinear program. We develop a decomposition and bound propagation scheme for solving the bilinear program and show through computational experiments that our method solves the problem to global optimality up to 100x faster than state-of-the-art solvers. We also release $\texttt{markovml}$, an open-source tool for building Markov processes, integrating pretrained machine learning models, and verifying their properties, available at https://github.com/mmaaz-git/markovml.
- Abstract(参考訳): パラメータが機械学習モデルの出力であるマルコフ過程の特性を正式に検証する問題を導入する。
我々の定式化は一般的であり、機械学習を用いた確率的プログラムの特性の検証や、医療モデリングにおけるサブグループ分析など、幅広い問題を解決する。
線形モデルやツリーベースモデル,ニューラルネットワークなど,幅広い種類の機械学習モデルに対して,到達性やヒット時間,合計報酬といったマルコフ連鎖の特性を検証することが,双線形プログラムとして定式化可能であることを示す。
両線形プログラムを解くための分解および有界伝搬方式を開発し,提案手法が最先端の解法よりも最大100倍早く大域的最適性に解決できることを計算実験により示す。
これはMarkovプロセスの構築、事前トレーニングされた機械学習モデルの統合、それらのプロパティの検証のためのオープンソースツールで、https://github.com/mmaaz-git/markovml.com/で利用可能です。
関連論文リスト
- Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations [61.21923643289266]
カオス・オブ・マニピュレーション(Chain of Manipulations)は、視覚言語モデル(Vision-Language Models)が、エビデンスを段階的に解決するメカニズムである。
トレーニング後、モデルは外部ツールを介さずに、本質的な操作(グラウンド、ズームインなど)を積極的に行うことで、様々な視覚的問題を解決することができる。
トレーニングされたモデルである textbfCogCoM は、4つのカテゴリの9つのベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-02-06T18:43:48Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
本稿では,連続データのためのテンソルネットワーク生成モデルについて紹介する。
我々は、このモデルの性能を、いくつかの合成および実世界のデータセットでベンチマークする。
本手法は, 急速に成長する生成学習分野において, 量子インスピレーション法の有効性を示す重要な理論的, 実証的な証拠を与える。
論文 参考訳(メタデータ) (2023-10-31T14:37:37Z) - Blending gradient boosted trees and neural networks for point and
probabilistic forecasting of hierarchical time series [0.0]
本稿では、勾配木やニューラルネットワークファミリーに属する機械学習モデルのブレンディング手法について述べる。
これらの原則は、最近のM5コンペティションにおいて、正確性と不確実性の両方のトラックでうまく適用された。
論文 参考訳(メタデータ) (2023-10-19T09:42:02Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Active Learning of Markov Decision Processes using Baum-Welch algorithm
(Extended) [0.0]
本稿では,マルコフ決定過程とマルコフ連鎖を学習するためのBaum-Welchアルゴリズムを再検討し,適応する。
本研究では,本手法を最先端のツールと実証的に比較し,提案手法が正確なモデルを得るために必要な観測回数を大幅に削減できることを実証する。
論文 参考訳(メタデータ) (2021-10-06T18:54:19Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Outlier-Robust Learning of Ising Models Under Dobrushin's Condition [57.89518300699042]
本研究では, サンプルの一定割合が逆向きに破壊されるような外乱条件下で, ドブルシンの条件を満たすIsingモデルの学習問題について検討する。
我々の主な成果は、ほぼ最適誤差保証を伴うこの問題に対して、計算効率のよい最初の頑健な学習アルゴリズムを提供することである。
論文 参考訳(メタデータ) (2021-02-03T18:00:57Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。