論文の概要: PRISMe: A Novel LLM-Powered Tool for Interactive Privacy Policy Assessment
- arxiv url: http://arxiv.org/abs/2501.16033v1
- Date: Mon, 27 Jan 2025 13:27:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:02.528944
- Title: PRISMe: A Novel LLM-Powered Tool for Interactive Privacy Policy Assessment
- Title(参考訳): PRISMe: 対話型プライバシポリシアセスメントのためのLLMを利用した新しいツール
- Authors: Vincent Freiberger, Arthur Fleig, Erik Buchmann,
- Abstract要約: 本稿では,LLM(Large Language Model)によるプライバシポリシ評価ツールであるPRISMeを紹介する。
このツールは、ユーザーがブラウジング中に長く複雑なプライバシーポリシーの本質を理解するのに役立つ。
我々は、PRISMeの効率性、ユーザビリティ、提供された情報の理解可能性、および認識への影響を評価した。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License:
- Abstract: Protecting online privacy requires users to engage with and comprehend website privacy policies, but many policies are difficult and tedious to read. We present PRISMe (Privacy Risk Information Scanner for Me), a novel Large Language Model (LLM)-driven privacy policy assessment tool, which helps users to understand the essence of a lengthy, complex privacy policy while browsing. The tool, a browser extension, integrates a dashboard and an LLM chat. One major contribution is the first rigorous evaluation of such a tool. In a mixed-methods user study (N=22), we evaluate PRISMe's efficiency, usability, understandability of the provided information, and impacts on awareness. While our tool improves privacy awareness by providing a comprehensible quick overview and a quality chat for in-depth discussion, users note issues with consistency and building trust in the tool. From our insights, we derive important design implications to guide future policy analysis tools.
- Abstract(参考訳): オンラインプライバシ保護には,Webサイトのプライバシポリシへの関与と理解が必要だ。
PRISMe(Privacy Risk Information Scanner for Me)は、LLM(Large Language Model)によるプライバシーポリシー評価ツールである。
このツールはブラウザの拡張機能で、ダッシュボードとLLMチャットを統合している。
主な貢献の1つは、そのようなツールの厳格な評価である。
混合手法を用いたユーザスタディ(N=22)において、PRISMeの効率性、ユーザビリティ、提供された情報の理解可能性、認識への影響を評価した。
当社のツールは,詳細な議論を行う上で,分かりやすい概要と質の高いチャットを提供することで,プライバシの意識を向上させる一方で,一貫性の問題やツールの信頼性構築に注意を払っている。
私たちの洞察から、将来の政策分析ツールをガイドするために重要な設計上の意味を導き出します。
関連論文リスト
- Interactive GDPR-Compliant Privacy Policy Generation for Software Applications [6.189770781546807]
ソフトウェアアプリケーションを使用するには、ユーザが個人情報を提供するように要求されることがある。
プライバシーが重要な関心事になっているため、世界中で多くの保護規制が存在している。
本稿では,包括的かつ適合したプライバシポリシを生成するアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-04T01:22:16Z) - Entailment-Driven Privacy Policy Classification with LLMs [3.564208334473993]
本稿では,プライバシーポリシーの段落をユーザが容易に理解できる意味のあるラベルに分類する枠組みを提案する。
私たちのフレームワークは、F1スコアを平均11.2%改善します。
論文 参考訳(メタデータ) (2024-09-25T05:07:05Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human [55.20137833039499]
我々は,人間によって使用される2つの共通戦略を用いて,機密テキストの衛生化を提案する。
我々は,クラウドソーシングと大規模言語モデルの利用を通じて,NAP2という最初のコーパスをキュレートする。
論文 参考訳(メタデータ) (2024-06-06T05:07:44Z) - {A New Hope}: Contextual Privacy Policies for Mobile Applications and An
Approach Toward Automated Generation [19.578130824867596]
コンテキストプライバシポリシ(CPP)の目的は、プライバシポリシを簡潔なスニペットに断片化し、アプリケーションのグラフィカルユーザインターフェース(GUI)内の対応するコンテキスト内でのみ表示することである。
本稿では,モバイルアプリケーションシナリオでCPPを初めて定式化し,モバイルアプリケーション用のCPPを自動生成するSeePrivacyという新しいマルチモーダルフレームワークを提案する。
人間の評価では、抽出されたプライバシーポリシーセグメントの77%が、検出されたコンテキストと適切に一致していると認識されている。
論文 参考訳(メタデータ) (2024-02-22T13:32:33Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - SeePrivacy: Automated Contextual Privacy Policy Generation for Mobile
Applications [21.186902172367173]
SeePrivacyは、モバイルアプリのコンテキストプライバシポリシを自動的に生成するように設計されている。
本手法は,モバイルGUI理解とプライバシポリシ文書解析を相乗的に組み合わせた手法である。
検索されたポリシーセグメントの96%は、そのコンテキストと正しく一致させることができる。
論文 参考訳(メタデータ) (2023-07-04T12:52:45Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
プライバシポリシ言語理解評価ベンチマークは,プライバシポリシ言語理解を評価するマルチタスクベンチマークである。
また、プライバシポリシの大規模なコーパスを収集し、プライバシポリシドメイン固有の言語モデル事前トレーニングを可能にします。
ドメイン固有の連続的な事前トレーニングは、すべてのタスクでパフォーマンスを改善することを実証します。
論文 参考訳(メタデータ) (2022-12-20T05:58:32Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z) - Privacy at Scale: Introducing the PrivaSeer Corpus of Web Privacy Policies [13.09699710197036]
PrivaSeerは、100万以上の英語ウェブサイトのプライバシーポリシーのコーパスです。
本稿では,可読性テスト,文書類似性,キーフレーズ抽出の結果を示し,トピックモデリングによるコーパスの探索を行った。
論文 参考訳(メタデータ) (2020-04-23T13:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。