Positivity and Entanglement in Markovian Open Quantum Systems and Hybrid Classical-Quantum Theories of Gravity
- URL: http://arxiv.org/abs/2501.16253v2
- Date: Wed, 12 Feb 2025 13:20:06 GMT
- Title: Positivity and Entanglement in Markovian Open Quantum Systems and Hybrid Classical-Quantum Theories of Gravity
- Authors: Oliviero Angeli, Matteo Carlesso,
- Abstract summary: We identify a class of continuous variable Markovian master equations for which positivity and complete positivity become equivalent.<n>We investigate the entangling properties of models of classical gravity interacting with quantum matter.<n>We prove that entanglement generation can indeed take place within these models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Markovian master equations underlie many areas of modern physics and, despite their apparent simplicity, they encode a rich and complex dynamics which is still under active research. We identify a class of continuous variable Markovian master equations for which positivity and complete positivity become equivalent. We apply this result to characterize the positivity of the partially transposed evolution of bipartite Gaussian systems, which encodes the dynamics of entanglement. Finally, the entangling properties of models of classical gravity interacting with quantum matter are investigated in the context of the experimental proposals to detect gravitationally induced entanglement. We prove that entanglement generation can indeed take place within these models. We prove that entanglement generation can indeed take place within these models. In particular, by focusing on the Di\'osi-Penrose model for two gravitationally interacting masses, we show that entanglement-based experiments have the potential to either falsify the model entirely or constrain the free parameter of the model $R_0$ up to values six orders of magnitude above the current state of the art.
Related papers
- Hybrid Classical-Quantum Newtonian Gravity with stable vacuum [0.0]
We investigate a hybrid classical-quantum model in which classical Newtonian gravity emerges from collapses of the mass density operator.
GPSL ensures vacuum stability; this, together with its applicability to identical particles and fields, makes it a promising candidate for a relativistic generalization.
We provide explicit examples, including the dynamics of a single particle and a rigid sphere, to illustrate the distinctive phenomenology of the model.
arXiv Detail & Related papers (2025-02-07T15:19:13Z) - Notes on solvable models of many-body quantum chaos [15.617052284991203]
We study a class of many body chaotic models related to the Brownian Sachdev-Ye-Kitaev model.
An emergent symmetry maps the quantum dynamics into a classical process.
arXiv Detail & Related papers (2024-08-20T18:24:52Z) - Correlations and signaling in the Schrödinger-Newton model [1.8847142777010908]
We show that the Schr"odinger--Newton interactions preserve the product form of the initial state of a many-body system.
We also present a mixed-state extension of the model that avoids superluminal signaling.
arXiv Detail & Related papers (2024-06-13T15:30:16Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Realizing the entanglement Hamiltonian of a topological quantum Hall
system [10.092164351939825]
Topological quantum many-body systems, such as Hall insulators, are characterized by a hidden order encoded in the entanglement between their constituents.
Entanglement entropy, an experimentally accessible single number that globally quantifies entanglement, has been proposed as a first signature of topological order.
We use a synthetic dimension, encoded in the electronic spin of dysprosium atoms, to implement spatially deformed Hall systems.
arXiv Detail & Related papers (2023-07-12T15:40:06Z) - Hierarchical generalization of dual unitarity [12.031278034659872]
Dual-unitary circuits allow for exact answers to interesting physical questions in clean or disordered quantum systems.
This family of models shows some non-universal features, like vanishing correlations inside the light-cone and instantaneous thermalization of local observables.
We propose a generalization of dual-unitary circuits where the exactly calculable spatial-temporal correlation functions display richer behavior.
arXiv Detail & Related papers (2023-07-06T17:07:05Z) - The wave operator representation of quantum and classical dynamics [0.0]
We study the little-known wave operator representation of quantum dynamics.
We find it leads to novel semiclassical approximations of both real and imaginary time dynamics.
We argue that the wave operator provides a new perspective that links previously unrelated representations.
arXiv Detail & Related papers (2023-02-26T02:21:31Z) - Experimental Realization of the Rabi-Hubbard Model with Trapped Ions [7.2123846411070325]
We report an experimental realization of the Rabi-Hubbard model using up to $16$ trapped ions.
We present a controlled study of its equilibrium properties and quantum dynamics.
For larger-size systems of $16$ ions and $16$ phonon modes, the effective Hilbert space dimension exceeds $257$, whose dynamics is intractable for classical supercomputers.
arXiv Detail & Related papers (2021-10-07T07:24:45Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Decoherence effects in non-classicality tests of gravity [0.0]
We study the effects of decoherence on the system's dynamics by monitoring the corresponding degree of entanglement.
We find that any value of the parameters of the Continuous Spontaneous localization model would completely hinder the generation of gravitationally induced entanglement.
arXiv Detail & Related papers (2020-12-11T10:30:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.