Risk-Informed Diffusion Transformer for Long-Tail Trajectory Prediction in the Crash Scenario
- URL: http://arxiv.org/abs/2501.16349v1
- Date: Sat, 18 Jan 2025 16:47:29 GMT
- Title: Risk-Informed Diffusion Transformer for Long-Tail Trajectory Prediction in the Crash Scenario
- Authors: Junlan Chen, Pei Liu, Zihao Zhang, Hongyi Zhao, Yufei Ji, Ziyuan Pu,
- Abstract summary: Trajectory prediction methods have been widely applied in autonomous driving technologies.
The lack of trajectory data in critical scenarios in the training data leads to the long-tail phenomenon.
Our work expands the methods to overcome the long-tail challenges in trajectory prediction.
- Score: 9.234660545975334
- License:
- Abstract: Trajectory prediction methods have been widely applied in autonomous driving technologies. Although the overall performance accuracy of trajectory prediction is relatively high, the lack of trajectory data in critical scenarios in the training data leads to the long-tail phenomenon. Normally, the trajectories of the tail data are more critical and more difficult to predict and may include rare scenarios such as crashes. To solve this problem, we extracted the trajectory data from real-world crash scenarios, which contain more long-tail data. Meanwhile, based on the trajectory data in this scenario, we integrated graph-based risk information and diffusion with transformer and proposed the Risk-Informed Diffusion Transformer (RI-DiT) trajectory prediction method. Extensive experiments were conducted on trajectory data in the real-world crash scenario, and the results show that the algorithm we proposed has good performance. When predicting the data of the tail 10\% (Top 10\%), the minADE and minFDE indicators are 0.016/2.667 m. At the same time, we showed the trajectory conditions of different long-tail distributions. The distribution of trajectory data is closer to the tail, the less smooth the trajectory is. Through the trajectory data in real-world crash scenarios, Our work expands the methods to overcome the long-tail challenges in trajectory prediction. Our method, RI-DiT, integrates inverse time to collision (ITTC) and the feature of traffic flow, which can predict long-tail trajectories more accurately and improve the safety of autonomous driving systems.
Related papers
- Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
We propose a data-driven learning framework, that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks.
After training with this framework, the learned model can improve long-step prediction accuracy significantly.
The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth.
arXiv Detail & Related papers (2024-09-25T21:08:25Z) - Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - FEND: A Future Enhanced Distribution-Aware Contrastive Learning
Framework for Long-tail Trajectory Prediction [19.626383744807068]
In this paper, we focus on dealing with the long-tail phenomenon in trajectory prediction.
We put forward a future enhanced contrastive learning framework to recognize tail trajectory patterns and form a feature space with separate pattern clusters.
Our framework outperforms the state-of-the-art long-tail prediction method on tailed samples by 9.5% on ADE and 8.5% on FDE.
arXiv Detail & Related papers (2023-03-29T10:16:55Z) - Long-Tail Prediction Uncertainty Aware Trajectory Planning for
Self-driving Vehicles [12.645597960926601]
Recent studies have shown that deep learning models trained on a dataset following a long-tailed driving scenario distribution will suffer from large prediction errors in the "tails"
This work defines a notion of prediction model uncertainty to quantify high errors due to sparse data.
Results show that the proposed method can improve the safety of trajectory planning under the prediction uncertainty caused by insufficient data.
arXiv Detail & Related papers (2022-07-02T10:17:31Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
Forecasting human trajectories in complex dynamic environments plays a critical role in autonomous vehicles and intelligent robots.
Most existing methods learn to predict future trajectories by behavior clues from history trajectories and interaction clues from environments.
We propose a counterfactual analysis method for human trajectory prediction to investigate the causality between the predicted trajectories and input clues.
arXiv Detail & Related papers (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.