Leveraging Induced Transferable Binding Principles for Associative Prediction of Novel Drug-Target Interactions
- URL: http://arxiv.org/abs/2501.16391v1
- Date: Sun, 26 Jan 2025 08:22:22 GMT
- Title: Leveraging Induced Transferable Binding Principles for Associative Prediction of Novel Drug-Target Interactions
- Authors: Xiaoqing Lian, Jie Zhu, Tianxu Lv, Shiyun Nie, Hang Fan, Guosheng Wu, Yunjun Ge, Lihua Li, Xiangxiang Zeng, Xiang Pan,
- Abstract summary: BioBridge predicts novel drug-target interactions using limited sequence data.
It incorporates multi-level encoders with adversarial training to accumulate transferable binding principles.
It proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
- Score: 13.23471591766483
- License:
- Abstract: Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
Related papers
- MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
Multi-channel Interaction Network (MIN) is a novel framework designed to predict drug-target interaction (DTI)
MIN incorporates a representation learning module and a multi-channel interaction module.
MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
arXiv Detail & Related papers (2024-11-23T05:38:36Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Embracing assay heterogeneity with neural processes for markedly
improved bioactivity predictions [0.276240219662896]
Predicting the bioactivity of a ligand is one of the hardest and most important challenges in computer-aided drug discovery.
Despite years of data collection and curation efforts, bioactivity data remains sparse and heterogeneous.
We present a hierarchical meta-learning framework that exploits the information synergy across disparate assays.
arXiv Detail & Related papers (2023-08-17T16:26:58Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - AI-Bind: Improving Binding Predictions for Novel Protein Targets and
Ligands [9.135203550164833]
We show that state-of-the-art models fail to generalize to novel structures.
We introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training.
We illustrate the value of AI-Bind by predicting drugs and natural compounds with binding affinity to SARS-CoV-2 viral proteins.
arXiv Detail & Related papers (2021-12-25T01:52:58Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Machine learning modeling of family wide enzyme-substrate specificity
screens [2.276367922551686]
Biocatalysis is a promising approach to synthesize pharmaceuticals, complex natural products, and commodity chemicals at scale.
The adoption of biocatalysis is limited by our ability to select enzymes that will catalyze their natural chemical transformation on non-natural substrates.
arXiv Detail & Related papers (2021-09-08T19:44:42Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.