A General Bayesian Framework for Informative Input Design in System Identification
- URL: http://arxiv.org/abs/2501.16625v1
- Date: Tue, 28 Jan 2025 01:57:51 GMT
- Title: A General Bayesian Framework for Informative Input Design in System Identification
- Authors: Alexandros E. Tzikas, Mykel J. Kochenderfer,
- Abstract summary: We tackle the problem of informative input design for system identification.
We select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data.
Our method outperforms model-free baselines with various linear and nonlinear dynamics.
- Score: 86.05414211113627
- License:
- Abstract: We tackle the problem of informative input design for system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information from the model with respect to the parameters. Our algorithm consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and propose an approximate iterative method to optimize the model's parameters. Based on this Bayesian formulation, we are able to define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. Our method outperforms model-free baselines with various linear and nonlinear dynamics.
Related papers
- Bayesian Model Parameter Learning in Linear Inverse Problems with Application in EEG Focal Source Imaging [49.1574468325115]
Inverse problems can be described as limited-data problems in which the signal of interest cannot be observed directly.
We studied a linear inverse problem that included an unknown non-linear model parameter.
We utilized a Bayesian model-based learning approach that allowed signal recovery and subsequently estimation of the model parameter.
arXiv Detail & Related papers (2025-01-07T18:14:24Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - LMI-based Data-Driven Robust Model Predictive Control [0.1473281171535445]
We propose a data-driven robust linear matrix inequality-based model predictive control scheme that considers input and state constraints.
The controller stabilizes the closed-loop system and guarantees constraint satisfaction.
arXiv Detail & Related papers (2023-03-08T18:20:06Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Optimizing model-agnostic Random Subspace ensembles [5.680512932725364]
We present a model-agnostic ensemble approach for supervised learning.
The proposed approach alternates between learning an ensemble of models using a parametric version of the Random Subspace approach.
We show the good performance of the proposed approach, both in terms of prediction and feature ranking, on simulated and real-world datasets.
arXiv Detail & Related papers (2021-09-07T13:58:23Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
We describe a method for the identification of models for dynamical systems from observational data.
The novelty is that we add a step of gradient-based optimization of the ODE parameters.
We find that gradient-based optimization of parameters improves predictive accuracy of the models.
arXiv Detail & Related papers (2021-07-06T11:41:10Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Adaptive Physics-Informed Neural Networks for Markov-Chain Monte Carlo [2.741266294612776]
We focus on a class of parameter estimation problems for which computing the likelihood function requires solving a PDE.
The proposed method consists of: (1) constructing an offline PINN-UQ model as an approximation to the forward model; and (2) refining this approximate model on the fly using samples generated from the MCMC sampler.
We numerically demonstrate the performance of the proposed APINN method in solving a parameter estimation problem for a system governed by the Poisson equation.
arXiv Detail & Related papers (2020-08-03T15:25:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.