論文の概要: Med-PU: Point Cloud Upsampling for High-Fidelity 3D Medical Shape Reconstruction
- arxiv url: http://arxiv.org/abs/2501.16716v4
- Date: Sun, 28 Sep 2025 06:16:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.172086
- Title: Med-PU: Point Cloud Upsampling for High-Fidelity 3D Medical Shape Reconstruction
- Title(参考訳): Med-PU:高忠実度3次元医用形状再構成のための点雲アップサンプリング
- Authors: Tongxu Zhang, Bei Wang,
- Abstract要約: 骨盤形状の正確な再構築のために,医用画像セグメンテーションと点雲アップサンプリングを統合したフレームワークであるMed-PUを提案する。
ランドマークやPCAベースの統計形状モデルとは異なり、Med-PUは大規模3次元形状データから直接暗黙の解剖学を学習する。
Med-PUは、アーティファクトを低減しつつ、表面品質と解剖学的忠実度を一貫して改善し、入力密度間の堅牢性を実証する。
- 参考スコア(独自算出の注目度): 3.03428788883563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-fidelity 3D anatomical reconstruction is a prerequisite for downstream clinical tasks such as preoperative planning, radiotherapy target delineation, and orthopedic implant design. We present Med-PU, a knowledge-driven framework that integrates volumetric medical image segmentation with point cloud upsampling for accurate pelvic shape reconstruction. Unlike landmark- or PCA-based statistical shape models, Med-PU learns an implicit anatomical prior directly from large-scale 3D shape data, enabling dense completion and refinement from sparse segmentation-derived point sets. The pipeline couples SAM-Med3D-based voxel segmentation, point extraction, deep upsampling, and surface reconstruction, yielding smooth and topologically consistent meshes. We evaluate Med-PU on pelvic CT datasets (MedShapePelvic for training and Pelvic1k for validation), benchmarking against state-of-the-art upsampling methods using comprehensive geometry and surface metrics. Med-PU consistently improves surface quality and anatomical fidelity while reducing artifacts, demonstrating robustness across input densities. Although validated on the pelvis, the approach is anatomy-agnostic and applicable to other skeletal regions and organs. These results suggest Med-PU as a practical, generalizable tool to bridge segmentation outputs and clinically usable 3D models.
- Abstract(参考訳): 高忠実度3D解剖学的再建は, 術前計画, 放射線治療対象脱線, 整形外科的インプラント設計などの下流臨床に必須である。
骨盤形状の正確な再構築のための点雲アップサンプリングとボリューム医療画像セグメンテーションを統合した知識駆動型フレームワークであるMed-PUを提案する。
ランドマークまたはPCAベースの統計形状モデルとは異なり、Med-PUは大規模3次元形状データから直接暗黙の解剖学的先行を学習し、スパースセグメンテーション由来の点集合から密閉と精細化を可能にする。
パイプラインはSAM-Med3Dベースのボクセルセグメンテーション、点抽出、深層サンプリング、表面再構成を結合し、滑らかで位相的に一貫したメッシュを生成する。
骨盤CTデータセット(トレーニング用MedShapePelvicと検証用Pelvic1k)上でMed-PUを評価し,包括的幾何と表面測定値を用いた最先端のアップサンプリング手法に対するベンチマークを行った。
Med-PUは、アーティファクトを低減しつつ、表面品質と解剖学的忠実度を一貫して改善し、入力密度間の堅牢性を実証する。
骨盤で検証されているが、解剖学的には認められず、他の骨格領域や臓器にも適用できる。
これらの結果から,Med-PUはセグメンテーション出力と臨床的に有用である3Dモデルを橋渡しするための実用的,汎用的なツールであることが示唆された。
関連論文リスト
- Optimization-Driven Statistical Models of Anatomies using Radial Basis Function Shape Representation [3.743399165184124]
粒子に基づく形状モデリングは、解剖学の個体群における形状変数の定量化に一般的な手法である。
本稿では,従来の最適化手法を用いて,モデルの特徴をより正確に制御する手法を提案する。
本研究では,2つの実データに対する最先端手法の有効性を実証し,損失選択を実証的に正当化する。
論文 参考訳(メタデータ) (2024-11-24T15:43:01Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - An End-to-End Deep Learning Generative Framework for Refinable Shape
Matching and Generation [45.820901263103806]
In-Silico Clinical Trials (ISCTs) の必要条件としての形状生成モデルの構築
本研究では,非教師なしの幾何学的深層学習モデルを構築し,潜在空間における補修可能な形状対応を確立する。
提案するベースモデルを,より可変性を高めるために,結合形状生成クラスタリングマルチアトラスフレームワークに拡張する。
論文 参考訳(メタデータ) (2024-03-10T21:33:53Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
既存の手法では、計算コストのかかるコンテキストアグリゲーションが伴うか、ポリープの事前モデリングが欠如しているため、難解なケースでは性能が低下する。
本稿では,2段階のトレーニングとエンドツーエンド推論フレームワークである Enhanced CenterNet with Contrastive Learning (ECC-PolypDet) を提案する。
Box-assisted Contrastive Learning (BCL) は, クラス内差を最小限に抑え, 前庭ポリープと背景のクラス間差を最大化するため, 隠れポリープを捕捉する。
微調整段階におけるIoU誘導サンプル再重み付けの導入
論文 参考訳(メタデータ) (2024-01-10T07:03:41Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer
Vision [119.29105800342779]
MedShapeNetは、医療アプリケーションへのデータ駆動ビジョンアルゴリズムの翻訳を容易にするために開発された。
ユニークな特徴として、実際の患者の画像データに基づいて、形状の大部分を直接モデル化する。
私たちのデータは、WebインターフェースとPythonアプリケーションプログラミングインターフェース(API)を介して自由にアクセスでき、差別的、再構成的、変動的なベンチマークに使用できます。
論文 参考訳(メタデータ) (2023-08-30T16:52:20Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
本稿では,データ依存型ノイズ生成やテクスチャ拡張を利用して,画像間SSMフレームワークのオンザフライデータ拡張のための新しい戦略を提案する。
提案手法は,画素値のみに頼らず,基礎となる幾何学に焦点をあてることにより,精度の向上を実現する。
論文 参考訳(メタデータ) (2023-07-06T20:21:12Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
我々は、教師なしの置換不変表現学習を利用して、テンプレートポイントクラウドを主題固有のメッシュに変形する方法を推定する新しいアプローチであるMesh2SSMを提案する。
Mesh2SSMは集団固有のテンプレートも学習でき、テンプレート選択によるバイアスを低減できる。
論文 参考訳(メタデータ) (2023-05-13T00:03:59Z) - BOSS: Bones, Organs and Skin Shape Model [10.50175010474078]
我々は,CT画像から学習した皮膚,内臓,骨を結合した変形可能な人体形状とポーズモデルを提案する。
確率的PCAを用いて、ポーズ正規化空間の統計的変動をモデル化することにより、本手法は身体の全体像を提供する。
論文 参考訳(メタデータ) (2023-03-08T22:31:24Z) - Landmark-free Statistical Shape Modeling via Neural Flow Deformations [0.5897108307012394]
本稿では,トレーニングインスタンス間の密接な対応を必要とせず,形状変化を学習する新しい形状モデリング手法であるFlowSSMを提案する。
当モデルでは, 遠位端大腿骨・肝臓に先立って, 表現的かつ頑健な形状を提供することで, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-14T18:17:19Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
我々はBIMS-PUと呼ばれる新しいポイント・クラウド・アップサンプリング・パイプラインを開発した。
対象のサンプリング因子を小さな因子に分解することにより,アップ/ダウンサンプリング手順をいくつかのアップ/ダウンサンプリングサブステップに分解する。
提案手法は最先端手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-25T13:13:37Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models [4.608133071225539]
統計的形状モデリング(SSM)は、医学画像から生成される形状の個体群における解剖学的変異を特徴付ける。
DeepSSMは、ディープラーニングベースのイメージ・トゥ・シェイプモデルのための青写真を提供することを目指している。
論文 参考訳(メタデータ) (2021-10-14T04:52:37Z) - A Self-Supervised Deep Framework for Reference Bony Shape Estimation in
Orthognathic Surgical Planning [55.30223654196882]
仮想的な矯正手術計画では、3次元顔面骨形状モデルにおける顎変形の外科的修正をシミュレートする。
正常な解剖を表現した基準顔骨形状モデルは、計画精度を向上させるための客観的ガイダンスを提供することができる。
本稿では,顔面骨の形状モデルを自動的に推定する自己教師型ディープフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-11T05:24:40Z) - Discriminative and Generative Models for Anatomical Shape Analysison
Point Clouds with Deep Neural Networks [3.7814216736076434]
与えられたタスクから低次元の形状表現を学習する解剖学的形状の解析のためのディープニューラルネットワークを導入する。
我々のフレームワークはモジュール構造であり、基本的な形状処理タスクを実行するいくつかの計算ブロックで構成されています。
本稿では, 疾患分類と年齢回帰の判別モデルと, 形状復元のための生成モデルを提案する。
論文 参考訳(メタデータ) (2020-10-02T07:37:40Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
我々は、広く使われている最先端のSSMツールの結果を体系的に評価する。
解剖学的ランドマーク/計測推測および病変スクリーニングのための検証フレームワークを提案する。
ShapeWorks と Deformetrica の形状モデルは臨床的に関連する集団レベルの変動を捉えている。
論文 参考訳(メタデータ) (2020-09-07T03:51:35Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。