How Linguistics Learned to Stop Worrying and Love the Language Models
- URL: http://arxiv.org/abs/2501.17047v2
- Date: Sun, 18 May 2025 21:18:02 GMT
- Title: How Linguistics Learned to Stop Worrying and Love the Language Models
- Authors: Richard Futrell, Kyle Mahowald,
- Abstract summary: We argue that the success of LMs obviates the need for studying linguistic theory and structure.<n>They force us to rethink arguments and ways of thinking that have been foundational in linguistics.<n>We offer an optimistic take on the relationship between language models and linguistics.
- Score: 17.413438037432414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language models can produce fluent, grammatical text. Nonetheless, some maintain that language models don't really learn language and also that, even if they did, that would not be informative for the study of human learning and processing. On the other side, there have been claims that the success of LMs obviates the need for studying linguistic theory and structure. We argue that both extremes are wrong. LMs can contribute to fundamental questions about linguistic structure, language processing, and learning. They force us to rethink arguments and ways of thinking that have been foundational in linguistics. While they do not replace linguistic structure and theory, they serve as model systems and working proofs of concept for gradient, usage-based approaches to language. We offer an optimistic take on the relationship between language models and linguistics.
Related papers
- When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners [111.50503126693444]
We show that language-specific ablation consistently boosts multilingual reasoning performance.<n>Compared to post-training, our training-free ablation achieves comparable or superior results with minimal computational overhead.
arXiv Detail & Related papers (2025-05-21T08:35:05Z) - On the Thinking-Language Modeling Gap in Large Language Models [68.83670974539108]
We show that there is a significant gap between the modeling of languages and thoughts.<n>We propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap.
arXiv Detail & Related papers (2025-05-19T09:31:52Z) - Crosslingual Reasoning through Test-Time Scaling [51.55526326294275]
We find that scaling up inference compute for English-centric reasoning language models (RLMs) improves multilingual mathematical reasoning across many languages.<n>While English-centric RLM's CoTs are naturally predominantly English, they consistently follow a quote-and-think pattern to reason about quoted non-English inputs.<n>We observe poor out-of-domain reasoning generalization, in particular from STEM to cultural commonsense knowledge, even for English.
arXiv Detail & Related papers (2025-05-08T16:50:06Z) - Between Circuits and Chomsky: Pre-pretraining on Formal Languages Imparts Linguistic Biases [47.920937001420505]
Pretraining language models on formal languages can improve their acquisition of natural language, but it is unclear which features of the formal language impart an inductive bias that leads to effective transfer.
We find that formal languages with both these properties enable language models to achieve lower loss on natural language and better linguistic generalization compared to other languages.
arXiv Detail & Related papers (2025-02-26T15:55:55Z) - Can Language Models Learn Typologically Implausible Languages? [62.823015163987996]
Grammatical features across human languages show intriguing correlations often attributed to learning biases in humans.
We discuss how language models (LMs) allow us to better determine the role of domain-general learning biases in language universals.
We test LMs on an array of highly naturalistic but counterfactual versions of the English (head-initial) and Japanese (head-final) languages.
arXiv Detail & Related papers (2025-02-17T20:40:01Z) - Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
We argue that claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions.
Language completeness assumes that a distinct and complete thing such as a natural language' exists.
The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data.
arXiv Detail & Related papers (2024-07-11T18:06:01Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - Mission: Impossible Language Models [29.249131112359503]
We develop a set of synthetic impossible languages of differing complexity.
At one end are languages that are inherently impossible, such as random and irreversible shuffles of English words.
At the other end are languages that may not be intuitively impossible but are often considered so in linguistics.
arXiv Detail & Related papers (2024-01-12T07:24:26Z) - Counterfactually Probing Language Identity in Multilingual Models [15.260518230218414]
We use AlterRep, a method of counterfactual probing, to explore the internal structure of multilingual models.
We find that, given a template in Language X, pushing towards Language Y systematically increases the probability of Language Y words.
arXiv Detail & Related papers (2023-10-29T01:21:36Z) - Why Linguistics Will Thrive in the 21st Century: A Reply to Piantadosi
(2023) [5.2424255020469595]
We present a critical assessment of Piantadosi's claim that "Modern language models refute Chomsky's approach to language"
Despite the impressive performance and utility of large language models, humans achieve their capacity for language after exposure to several orders of magnitude less data.
We conclude that generative linguistics as a scientific discipline will remain indispensable throughout the 21st century and beyond.
arXiv Detail & Related papers (2023-08-06T23:41:14Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - Dissociating language and thought in large language models [52.39241645471213]
Large Language Models (LLMs) have come closest among all models to date to mastering human language.
We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms.
Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty.
arXiv Detail & Related papers (2023-01-16T22:41:19Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
We study three language properties: constituent order, composition and word co-occurrence.
Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.
arXiv Detail & Related papers (2022-03-16T07:09:35Z) - Language Models are not Models of Language [0.0]
Transfer learning has enabled large deep learning neural networks trained on the language modeling task to vastly improve performance.
We argue that the term language model is misleading because deep learning models are not theoretical models of language.
arXiv Detail & Related papers (2021-12-13T22:39:46Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.