論文の概要: EdgeMLOps: Operationalizing ML models with Cumulocity IoT and thin-edge.io for Visual quality Inspection
- arxiv url: http://arxiv.org/abs/2501.17062v1
- Date: Tue, 28 Jan 2025 16:40:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:43:07.141619
- Title: EdgeMLOps: Operationalizing ML models with Cumulocity IoT and thin-edge.io for Visual quality Inspection
- Title(参考訳): EdgeMLOps: ビジュアル品質検査のためのCumulocity IoTとThin-edge.ioを使用したMLモデルの運用
- Authors: Kanishk Chaturvedi, Johannes Gasthuber, Mohamed Abdelaal,
- Abstract要約: 本稿では、リソース制約のあるエッジデバイス上で機械学習モデルをデプロイおよび管理するために、Cumu IoTとThin-edge.ioを活用するフレームワークであるEdgeMLOpsを紹介する。
エッジ環境におけるモデル最適化、デプロイメント、ライフサイクル管理の課題に対処する。
フレームワークの有効性は、エッジデバイス上で資産のイメージを処理する視覚的品質検査(VQI)のユースケースを通じて実証され、資産管理システム内でリアルタイムの条件更新を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces EdgeMLOps, a framework leveraging Cumulocity IoT and thin-edge.io for deploying and managing machine learning models on resource-constrained edge devices. We address the challenges of model optimization, deployment, and lifecycle management in edge environments. The framework's efficacy is demonstrated through a visual quality inspection (VQI) use case where images of assets are processed on edge devices, enabling real-time condition updates within an asset management system. Furthermore, we evaluate the performance benefits of different quantization methods, specifically static and dynamic signed-int8, on a Raspberry Pi 4, demonstrating significant inference time reductions compared to FP32 precision. Our results highlight the potential of EdgeMLOps to enable efficient and scalable AI deployments at the edge for industrial applications.
- Abstract(参考訳): 本稿では、リソース制約のあるエッジデバイス上で機械学習モデルをデプロイおよび管理するために、Cumulocity IoTとThin-edge.ioを活用するフレームワークであるEdgeMLOpsを紹介する。
エッジ環境におけるモデル最適化、デプロイメント、ライフサイクル管理の課題に対処する。
フレームワークの有効性は、エッジデバイス上で資産のイメージを処理する視覚的品質検査(VQI)のユースケースを通じて実証され、資産管理システム内でリアルタイムの条件更新を可能にする。
さらに,Raspberry Pi 4における量子化手法,特に静的および動的符号int8の性能評価を行い,FP32の精度と比較して推定時間を大幅に短縮した。
当社の結果は、EdgeMLOpsが産業アプリケーションにおいて、エッジでの効率的でスケーラブルなAIデプロイメントを可能にする可能性を強調しています。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - EdgeRL: Reinforcement Learning-driven Deep Learning Model Inference Optimization at Edge [2.8946323553477704]
本稿では,Advantage Actor-Critic (A2C) Reinforcement Learning (RL)アプローチを用いて,バランスを打とうとするEdgeRLフレームワークを提案する。
我々はEdgeRLフレームワークの利点を,端末の省エネ,推論精度の向上,エンドツーエンドの推論遅延低減の観点から評価した。
論文 参考訳(メタデータ) (2024-10-16T04:31:39Z) - R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
我々は、エージェントがスパース・リワード、継続的なアクション、ゴールベースのロボット制御POMDP環境においてエクササイズするのを助けるために、事前の選好学習手法と自己修正スケジュールを導入する。
我々のエージェントは、累積報酬、相対安定性、成功率の観点から、最先端モデルよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-21T18:32:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Perceiver-VL: Efficient Vision-and-Language Modeling with Iterative
Latent Attention [100.81495948184649]
本稿では,長いビデオやテキストなどの高次元マルチモーダル入力を効率的に処理する視覚・言語フレームワークPerceiver-VLを提案する。
我々のフレームワークは、多くの最先端のトランスフォーマーベースモデルで使用される自己注意の二次的な複雑さとは対照的に、線形複雑性でスケールする。
論文 参考訳(メタデータ) (2022-11-21T18:22:39Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
我々は、エッジデバイスとクラウド間でCNNを実行することは、リソース制約のある最適化問題を解決することと同義であると主張している。
実世界のエッジデバイスでの実験では、LMOSはエッジで異なるCNNモデルの実行可能な実行を保証する。
論文 参考訳(メタデータ) (2021-07-19T19:39:56Z) - A High-Performance Adaptive Quantization Approach for Edge CNN
Applications [0.225596179391365]
最近の畳み込みニューラルネットワーク(CNN)開発は、様々なアプリケーションに対する最先端のモデル精度を推し進めている。
精度の向上は、かなりのメモリ帯域幅とストレージ要求のコストが伴う。
本稿では,偏りのあるアクティベーションの問題を解決するための適応型高性能量子化法を提案する。
論文 参考訳(メタデータ) (2021-07-18T07:49:18Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
AIoTアプリケーションのエッジで機械学習を容易にするためのフレームワークを提案する。
コントリビューションは、大規模にフリート分析を提供するためのサービス、ツール、メソッドを含むアーキテクチャである。
本稿では,大学キャンパスの部屋でiotデバイスを用いた実験を行うことで,フレームワークの予備検証を行う。
論文 参考訳(メタデータ) (2021-01-12T11:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。