A Hybrid Deep Learning CNN Model for Enhanced COVID-19 Detection from Computed Tomography (CT) Scan Images
- URL: http://arxiv.org/abs/2501.17160v1
- Date: Tue, 28 Jan 2025 18:59:21 GMT
- Title: A Hybrid Deep Learning CNN Model for Enhanced COVID-19 Detection from Computed Tomography (CT) Scan Images
- Authors: Suresh Babu Nettur, Shanthi Karpurapu, Unnati Nettur, Likhit Sagar Gajja, Sravanthy Myneni, Akhil Dusi, Lalithya Posham,
- Abstract summary: Early detection of COVID-19 is crucial for effective treatment and controlling its spread.
This study proposes a novel hybrid deep learning model for detecting COVID-19 from CT scan images.
Our proposed model achieved an accuracy of 98.93%, outperforming the individual models in terms of precision, recall, F1 scores, and ROC curve performance.
- Score: 0.0
- License:
- Abstract: Early detection of COVID-19 is crucial for effective treatment and controlling its spread. This study proposes a novel hybrid deep learning model for detecting COVID-19 from CT scan images, designed to assist overburdened medical professionals. Our proposed model leverages the strengths of VGG16, DenseNet121, and MobileNetV2 to extract features, followed by Principal Component Analysis (PCA) for dimensionality reduction, after which the features are stacked and classified using a Support Vector Classifier (SVC). We conducted comparative analysis between the proposed hybrid model and individual pre-trained CNN models, using a dataset of 2,108 training images and 373 test images comprising both COVID-positive and non-COVID images. Our proposed hybrid model achieved an accuracy of 98.93%, outperforming the individual models in terms of precision, recall, F1 scores, and ROC curve performance.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data.
Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets.
This study provides a detailed discussion of the success and failure of the proposed model at an image level.
arXiv Detail & Related papers (2022-12-28T11:48:29Z) - COVID-19 Detection Using Transfer Learning Approach from Computed
Tomography Images [0.0]
We propose a transfer learning-based approach using a recently annotated Computed Tomography (CT) image database.
Specifically, we investigate the suitability of a modified Xception model for COVID-19 detection.
Results reveal the method's superiority in accuracy, precision, recall, and macro F1 score on the validation subset.
arXiv Detail & Related papers (2022-07-01T08:22:00Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning [0.07994291858620557]
We propose a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance.
We conduct extensive sets of experiments on two CT image datasets, namely the SARS-CoV-2 CT-scan and the COVID19-CT.
The obtained results show superior performances for our models compared with previous studies.
arXiv Detail & Related papers (2020-11-09T17:37:31Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.