論文の概要: Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help?
- arxiv url: http://arxiv.org/abs/2501.17207v1
- Date: Tue, 28 Jan 2025 07:24:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:55:12.017896
- Title: Rethinking Functional Brain Connectome Analysis: Do Graph Deep Learning Models Help?
- Title(参考訳): 機能的脳コネクトーム分析の再考:グラフディープラーニングモデルは役に立つか?
- Authors: Keqi Han, Yao Su, Lifang He, Liang Zhan, Sergey Plis, Vince Calhoun, Carl Yang,
- Abstract要約: 4つの大規模神経画像研究に基づくグラフ深層学習モデルの再検討を行った。
グラフ深層学習モデルの目印であるメッセージアグリゲーション機構は,通常想定されるような予測性能には役に立たないことがわかった。
この問題に対処するために,線形モデルとグラフ注意ネットワークを組み合わせたハイブリッドモデルを提案する。
- 参考スコア(独自算出の注目度): 26.993152836226084
- License:
- Abstract: Functional brain connectome is crucial for deciphering the neural mechanisms underlying cognitive functions and neurological disorders. Graph deep learning models have recently gained tremendous popularity in this field. However, their actual effectiveness in modeling the brain connectome remains unclear. In this study, we re-examine graph deep learning models based on four large-scale neuroimaging studies encompassing diverse cognitive and clinical outcomes. Surprisingly, we find that the message aggregation mechanism, a hallmark of graph deep learning models, does not help with predictive performance as typically assumed, but rather consistently degrades it. To address this issue, we propose a hybrid model combining a linear model with a graph attention network through dual pathways, achieving robust predictions and enhanced interpretability by revealing both localized and global neural connectivity patterns. Our findings urge caution in adopting complex deep learning models for functional brain connectome analysis, emphasizing the need for rigorous experimental designs to establish tangible performance gains and perhaps more importantly, to pursue improvements in model interpretability.
- Abstract(参考訳): 機能的脳コネクトームは認知機能や神経疾患の根底にある神経機構の解明に不可欠である。
グラフ深層学習モデルは、最近この分野で大きな人気を集めている。
しかし、脳コネクトームのモデリングにおける実際の効果は不明である。
本研究では,認知と臨床の多様な結果を含む4つの大規模神経画像研究に基づいて,グラフ深層学習モデルを再検討する。
驚いたことに、グラフ深層学習モデルの目印であるメッセージ集約機構は、予想されるような予測性能には役立ちません。
この問題に対処するために,線形モデルとグラフ注意ネットワークを組み合わせたハイブリッドモデルを提案する。
本研究は,機能的脳コネクトーム解析のための複雑な深層学習モデルの導入に注意を喚起し,具体的な性能向上を実現するための厳密な実験設計の必要性を強調した。
関連論文リスト
- Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
視覚入力から行動出力まで,包括的な視覚的意思決定モデルを実装した。
我々のモデルは人間の行動と密接に一致し、霊長類の神経活動を反映する。
ニューロイメージング・インフォームド・ファインチューニング手法を導入し、モデルに適用し、性能改善を実現した。
論文 参考訳(メタデータ) (2024-09-04T02:38:52Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - TiBGL: Template-induced Brain Graph Learning for Functional Neuroimaging
Analysis [27.23929515170454]
本稿ではテンプレート誘発脳グラフ学習(TiBGL)と呼ばれる新しい脳グラフ学習フレームワークを提案する。
TiBGLには識別能力と解釈能力がある。
3つの実世界のデータセットによる実験結果から,提案したTiBGLは,9つの最先端手法と比較して優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-14T15:17:42Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
論文 参考訳(メタデータ) (2021-11-01T21:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。