Deep Learning-based Dual Watermarking for Image Copyright Protection and Authentication
- URL: http://arxiv.org/abs/2502.18501v1
- Date: Fri, 21 Feb 2025 07:58:39 GMT
- Title: Deep Learning-based Dual Watermarking for Image Copyright Protection and Authentication
- Authors: Sudev Kumar Padhi, Archana Tiwari, Sk. Subidh Ali,
- Abstract summary: We present a Deep Learning based dual invisible watermarking technique for performing source authentication, content authentication, and protecting digital content copyright of images sent over the internet.<n>It is also impossible to imitate or overwrite watermarks because the cryptographic hash of the image and the dominant features of the image are used as watermarks.<n>Our trained model achieves high watermark extraction accuracy and to the best of our knowledge, this is the first deep learning-based dual watermarking technique proposed in the literature.
- Score: 1.6385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images integrity and authenticity is necessary to protect them against various attacks that manipulate them. We present a Deep Learning (DL) based dual invisible watermarking technique for performing source authentication, content authentication, and protecting digital content copyright of images sent over the internet. Beyond securing images, the proposed technique demonstrates robustness to content-preserving image manipulations. It is also impossible to imitate or overwrite watermarks because the cryptographic hash of the image and the dominant features of the image in the form of perceptual hash are used as watermarks. We highlighted the need for source authentication to safeguard image integrity and authenticity, along with identifying similar content for copyright protection. After exhaustive testing, we obtained a high peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), which implies there is a minute change in the original image after embedding our watermarks. Our trained model achieves high watermark extraction accuracy and to the best of our knowledge, this is the first deep learning-based dual watermarking technique proposed in the literature.
Related papers
- On the Coexistence and Ensembling of Watermarks [93.15379331904602]
We find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness.<n>We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
arXiv Detail & Related papers (2025-01-29T00:37:06Z) - SLIC: Secure Learned Image Codec through Compressed Domain Watermarking to Defend Image Manipulation [0.9208007322096533]
This paper introduces the Secure Learned Image Codec (SLIC), a novel active approach to ensuring image authenticity.
SLIC embeds watermarks as adversarial perturbations in the latent space, creating images that degrade in quality upon re-compression if tampered with.
Our method involves fine-tuning a neural encoder/decoder to balance watermark invisibility with robustness, ensuring minimal quality loss for non-watermarked images.
arXiv Detail & Related papers (2024-10-19T11:42:36Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
We propose a semi-fragile image watermarking technique that embeds an invisible secret message into real images for media authentication.
Our proposed framework is designed to be fragile to facial manipulations or tampering while being robust to benign image-processing operations and watermark removal attacks.
arXiv Detail & Related papers (2024-10-02T18:05:03Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - A Resilient and Accessible Distribution-Preserving Watermark for Large Language Models [65.40460716619772]
Our research focuses on the importance of a textbfDistribution-textbfPreserving (DiP) watermark.
Contrary to the current strategies, our proposed DiPmark simultaneously preserves the original token distribution during watermarking.
It is detectable without access to the language model API and prompts (accessible), and is provably robust to moderate changes of tokens.
arXiv Detail & Related papers (2023-10-11T17:57:35Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
We propose a certifiable watermarking method for deep learning models.
We show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain l2 threshold.
Our watermark is also empirically more robust compared to previous watermarking methods.
arXiv Detail & Related papers (2022-07-16T16:06:59Z) - FaceSigns: Semi-Fragile Neural Watermarks for Media Authentication and
Countering Deepfakes [25.277040616599336]
Deepfakes and manipulated media are becoming a prominent threat due to the recent advances in realistic image and video synthesis techniques.
We introduce a deep learning based semi-fragile watermarking technique that allows media authentication by verifying an invisible secret message embedded in the image pixels.
arXiv Detail & Related papers (2022-04-05T03:29:30Z) - A Robust Document Image Watermarking Scheme using Deep Neural Network [10.938878993948517]
This paper proposes an end-to-end document image watermarking scheme using the deep neural network.
Specifically, an encoder and a decoder are designed to embed and extract the watermark.
A text-sensitive loss function is designed to limit the embedding modification on characters.
arXiv Detail & Related papers (2022-02-26T05:28:52Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.