論文の概要: A Geometric Perspective for High-Dimensional Multiplex Graphs
- arxiv url: http://arxiv.org/abs/2501.17374v1
- Date: Wed, 29 Jan 2025 02:02:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:28.568016
- Title: A Geometric Perspective for High-Dimensional Multiplex Graphs
- Title(参考訳): 高次元多重グラフの幾何学的視点
- Authors: Kamel Abdous, Nairouz Mrabah, Mohamed Bouguessa,
- Abstract要約: 幾何学的観点から高次元多重グラフの埋め込み問題について検討する。
階層的な次元埋め込みと双曲グラフニューラルネットワークを利用する新しい多重グラフ埋め込み法を提案する。
実世界の高次元多重グラフの実験結果は、階層型と双曲型埋め込みの間の相乗効果が幾何歪みをはるかに少なくすることを示している。
- 参考スコア(独自算出の注目度): 6.4696661970122085
- License:
- Abstract: High-dimensional multiplex graphs are characterized by their high number of complementary and divergent dimensions. The existence of multiple hierarchical latent relations between the graph dimensions poses significant challenges to embedding methods. In particular, the geometric distortions that might occur in the representational space have been overlooked in the literature. This work studies the problem of high-dimensional multiplex graph embedding from a geometric perspective. We find that the node representations reside on highly curved manifolds, thus rendering their exploitation more challenging for downstream tasks. Moreover, our study reveals that increasing the number of graph dimensions can cause further distortions to the highly curved manifolds. To address this problem, we propose a novel multiplex graph embedding method that harnesses hierarchical dimension embedding and Hyperbolic Graph Neural Networks. The proposed approach hierarchically extracts hyperbolic node representations that reside on Riemannian manifolds while gradually learning fewer and more expressive latent dimensions of the multiplex graph. Experimental results on real-world high-dimensional multiplex graphs show that the synergy between hierarchical and hyperbolic embeddings incurs much fewer geometric distortions and brings notable improvements over state-of-the-art approaches on downstream tasks.
- Abstract(参考訳): 高次元多重グラフは、その多くの相補的次元と発散的次元によって特徴づけられる。
グラフ次元間の多重階層的潜在関係の存在は、埋め込み法に重大な課題をもたらす。
特に、表現空間で起こるような幾何学的歪みは文献で見過ごされている。
本研究は幾何学的観点から高次元多重グラフ埋め込みの問題を研究する。
ノード表現は高度に湾曲した多様体上に存在するので、下流のタスクではそれらの利用がより困難である。
さらに,本研究では,グラフ次元の増大が,高曲線多様体のさらなる歪みを引き起こすことを明らかにした。
この問題に対処するために,階層的な次元埋め込みと双曲グラフニューラルネットワークを利用する新しい多重グラフ埋め込み法を提案する。
提案手法は、リーマン多様体上に存在する双曲ノード表現を階層的に抽出し、徐々に多重グラフのより少ない、より表現力のある潜在次元を学習する。
実世界の高次元多重グラフの実験結果から、階層型と双曲型埋め込みの相乗効果は幾何歪みをはるかに少なくし、下流タスクにおける最先端のアプローチよりも顕著な改善をもたらすことが示された。
関連論文リスト
- Weighted Embeddings for Low-Dimensional Graph Representation [0.13499500088995461]
グラフを重み付き空間に埋め込むことを提案し、これは双曲幾何学と密接に関連しているが数学的には単純である。
重み付き埋め込みは、より少ない次元を使いながら、異質グラフに対する最先端のユークリッド埋め込みを著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-10-08T13:41:03Z) - Hierarchical Aggregations for High-Dimensional Multiplex Graph Embedding [7.271256448682229]
HMGEは高次元多重グラフの階層的アグリゲーションに基づく新しい埋め込み手法である。
我々は、ローカルパッチとグローバルサマリー間の相互情報を活用して、監督なしにモデルを訓練する。
合成および実世界のデータに関する詳細な実験は、下流監視タスクに対する我々のアプローチの適合性を示している。
論文 参考訳(メタデータ) (2023-12-28T05:39:33Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
高品質なグラフ埋め込みを学習するための新しいコントラスト学習フレームワークを提案する。
具体的には、階層的なデータ不変情報を効果的にキャプチャするアライメントメトリックを設計する。
双曲空間において、木の性質に関連する葉と高さの均一性に対処する必要があることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:42Z) - Contrastive Graph Clustering in Curvature Spaces [74.03252813800334]
本研究では,CONGREGATE という新しいグラフクラスタリングモデルを提案する。
幾何学的クラスタリングを支援するため、理論的に基底とした不均一曲率空間を構築した。
次に、拡張不要な再重み付きコントラスト的アプローチでグラフクラスタをトレーニングする。
論文 参考訳(メタデータ) (2023-05-05T14:04:52Z) - FMGNN: Fused Manifold Graph Neural Network [102.61136611255593]
グラフ表現学習は、様々なグラフタスクにおいて広く研究され、効果が実証されている。
本稿では,異なるマニフォールドにグラフを埋め込む新しいGNNアーキテクチャであるFused Manifold Graph Neural Network (NN)を提案する。
提案実験により,NNはノード分類およびリンク予測タスクのベンチマークにおいて,強いベースラインよりも優れた性能が得られることを示した。
論文 参考訳(メタデータ) (2023-04-03T15:38:53Z) - Hyperbolic Graph Representation Learning: A Tutorial [39.25873010585029]
本チュートリアルは,このグラフ表現学習の新たな分野について,すべてのオーディエンスにアクセス可能なことを目的とした紹介を行う。
まず、グラフ表現学習といくつかの予備的および双曲幾何学について簡単な紹介を行う。
そして、それらを一般的なフレームワークに統合することで、現在の双曲グラフニューラルネットワークの技術詳細を包括的に再考する。
論文 参考訳(メタデータ) (2022-11-08T07:15:29Z) - Complex Hyperbolic Knowledge Graph Embeddings with Fast Fourier
Transform [29.205221688430733]
知識グラフ(KG)埋め込みのための幾何学的空間の選択は、KG完了タスクの性能に大きな影響を与える。
複雑な双曲型幾何学の最近の研究は、様々な階層構造を捉えるための双曲型埋め込みをさらに改善した。
本稿では,マルチリレーショナルKG埋め込みにおける複素双曲幾何学の表現能力を活用することを目的とする。
論文 参考訳(メタデータ) (2022-11-07T15:46:00Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
本稿では,属性グラフの深部生成モデルのための新しいアンタングルメント拡張フレームワークを提案する。
ノードとエッジのデコンボリューションのための新しいアーキテクチャを用いて、上記の3種類の潜伏因子を解離する新しい変分的目的を提案する。
各タイプ内では、画像の既存のフレームワークの一般化が示され、個々の因子のゆがみがさらに強化される。
論文 参考訳(メタデータ) (2020-06-09T16:33:49Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
我々は、ある曲面リーマン空間におけるグラフ埋め込みを学習し、最適化する方法を示す。
我々の結果は、機械学習パイプラインにおける非ユークリッド埋め込みの利点の新たな証拠として役立ちます。
論文 参考訳(メタデータ) (2020-02-20T10:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。