LLM Assistance for Pediatric Depression
- URL: http://arxiv.org/abs/2501.17510v1
- Date: Wed, 29 Jan 2025 09:27:27 GMT
- Title: LLM Assistance for Pediatric Depression
- Authors: Mariia Ignashina, Paulina Bondaronek, Dan Santel, John Pestian, Julia Ive,
- Abstract summary: This work investigates the feasibility of state-of-the-art LLMs for depressive symptom extraction in pediatric settings (ages 6-24).
Our findings show that all LLMs are 60% more efficient than word match, with Flan leading in precision (average F1: 0.65, precision: 0.78), excelling in the extraction of more rare symptoms like "sleep problems" (F1: 0.92) and "self-loathing" (F1: 0.8)
Llama 3, with the highest recall (0.90), overgeneralizes symptoms, making it less suitable for this type of analysis.
- Score: 2.1398676192061683
- License:
- Abstract: Traditional depression screening methods, such as the PHQ-9, are particularly challenging for children in pediatric primary care due to practical limitations. AI has the potential to help, but the scarcity of annotated datasets in mental health, combined with the computational costs of training, highlights the need for efficient, zero-shot approaches. In this work, we investigate the feasibility of state-of-the-art LLMs for depressive symptom extraction in pediatric settings (ages 6-24). This approach aims to complement traditional screening and minimize diagnostic errors. Our findings show that all LLMs are 60% more efficient than word match, with Flan leading in precision (average F1: 0.65, precision: 0.78), excelling in the extraction of more rare symptoms like "sleep problems" (F1: 0.92) and "self-loathing" (F1: 0.8). Phi strikes a balance between precision (0.44) and recall (0.60), performing well in categories like "Feeling depressed" (0.69) and "Weight change" (0.78). Llama 3, with the highest recall (0.90), overgeneralizes symptoms, making it less suitable for this type of analysis. Challenges include the complexity of clinical notes and overgeneralization from PHQ-9 scores. The main challenges faced by LLMs include navigating the complex structure of clinical notes with content from different times in the patient trajectory, as well as misinterpreting elevated PHQ-9 scores. We finally demonstrate the utility of symptom annotations provided by Flan as features in an ML algorithm, which differentiates depression cases from controls with high precision of 0.78, showing a major performance boost compared to a baseline that does not use these features.
Related papers
- Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients [2.3769374446083735]
Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days.
To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models.
arXiv Detail & Related papers (2025-01-21T15:41:20Z) - Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.
Previous studies employing machine learning faced limitations in feature selection and model interpretability.
This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions [46.60244609728416]
Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a litmus test of a model's utility in clinical practice.
We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WDs)
We reveal four surprising results about LMs/LLMs.
arXiv Detail & Related papers (2024-06-17T19:50:40Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases [8.120827875780382]
This paper presents the first study of the interpretability and imbalanced semi-supervised learning of the multiclass intelligent skin diagnosis framework (ISDL)
Our ISDL achieved a promising performance with an accuracy of 0.979, sensitivity of 0.975, specificity of 0.973, macro-F1 score of 0.974 and area under the receiver operating characteristic curve (AUC) of 0.999 for multi-label skin disease classification.
arXiv Detail & Related papers (2022-11-20T03:33:33Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined.
Recent work has focused on using genomics and transcriptomics for identification of tumor origins.
We present a deep learning-based computational pathology algorithm that can provide a differential diagnosis for CUP.
arXiv Detail & Related papers (2020-06-24T17:59:36Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.