An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases
- URL: http://arxiv.org/abs/2211.10858v3
- Date: Mon, 10 Jun 2024 14:28:18 GMT
- Title: An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases
- Authors: Futian Weng, Yuanting Ma, Jinghan Sun, Shijun Shan, Qiyuan Li, Jianping Zhu, Yang Wang, Yan Xu,
- Abstract summary: This paper presents the first study of the interpretability and imbalanced semi-supervised learning of the multiclass intelligent skin diagnosis framework (ISDL)
Our ISDL achieved a promising performance with an accuracy of 0.979, sensitivity of 0.975, specificity of 0.973, macro-F1 score of 0.974 and area under the receiver operating characteristic curve (AUC) of 0.999 for multi-label skin disease classification.
- Score: 8.120827875780382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dermatological diseases are among the most common disorders worldwide. This paper presents the first study of the interpretability and imbalanced semi-supervised learning of the multiclass intelligent skin diagnosis framework (ISDL) using 58,457 skin images with 10,857 unlabeled samples. Pseudo-labelled samples from minority classes have a higher probability at each iteration of class-rebalancing self-training, thereby promoting the utilization of unlabeled samples to solve the class imbalance problem. Our ISDL achieved a promising performance with an accuracy of 0.979, sensitivity of 0.975, specificity of 0.973, macro-F1 score of 0.974 and area under the receiver operating characteristic curve (AUC) of 0.999 for multi-label skin disease classification. The Shapley Additive explanation (SHAP) method is combined with our ISDL to explain how the deep learning model makes predictions. This finding is consistent with the clinical diagnosis. We also proposed a sampling distribution optimisation strategy to select pseudo-labelled samples in a more effective manner using ISDLplus. Furthermore, it has the potential to relieve the pressure placed on professional doctors, as well as help with practical issues associated with a shortage of such doctors in rural areas.
Related papers
- Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
This study is conducted with one of the largest WSI colorectal samples dataset with approximately 10,500 WSIs.
Our proposed method predicts, for the patch-based tiles, a class based on the severity of the dysplasia.
It is trained with an interpretable mixed-supervision scheme to leverage the domain knowledge introduced by pathologists.
arXiv Detail & Related papers (2023-01-06T17:10:32Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - A hybrid machine learning/deep learning COVID-19 severity predictive
model from CT images and clinical data [0.0]
We developed a hybrid machine learning/deep learning model to classify patients in two outcome categories, non-ICU and ICU.
A fully 3D patient-level CNN classifier on baseline CT images is used as feature extractor.
The model aims to provide clinical decision support to medical doctors, with the probability score of belonging to an outcome class and with case-based SHAP interpretation of features importance.
arXiv Detail & Related papers (2021-05-13T08:39:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Interpretable Survival Prediction for Colorectal Cancer using Deep
Learning [2.9084170197404844]
We developed a deep learning system (DLS) for predicting disease specific survival for stage II and III colorectal cancer.
We generated human-interpretable histologic features by clustering embeddings from a deep-learning based image-similarity model.
Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features.
arXiv Detail & Related papers (2020-11-17T21:57:16Z) - Deep Learning Applied to Chest X-Rays: Exploiting and Preventing
Shortcuts [11.511323714777298]
This paper studies the case of spurious class skew in which patients with a particular attribute are spuriously more likely to have the outcome of interest.
We show that deep nets can accurately identify many patient attributes including sex (AUROC = 0.96) and age (AUROC >= 0.90) when learning to predict a diagnosis.
A simple transfer learning approach is surprisingly effective at preventing the shortcut and promoting good performance.
arXiv Detail & Related papers (2020-09-21T18:52:43Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.