Exploring the Effects of Mass Dependence in Spontaneous Collapse Models
- URL: http://arxiv.org/abs/2501.17637v3
- Date: Tue, 22 Jul 2025 10:49:50 GMT
- Title: Exploring the Effects of Mass Dependence in Spontaneous Collapse Models
- Authors: Nicolò Piccione, Angelo Bassi,
- Abstract summary: Spontaneous collapse models aim to solve the long-standing measurement problem in quantum mechanics by modifying the theory's dynamics to include objective wave function collapses.<n>A central feature of these models is their dependence on mass density, which directly influences how and when collapse events occur.<n>We show that only a limited range of mass-dependence functions are viable, with significant implications for the future development and empirical testability of collapse-based models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spontaneous collapse models aim to solve the long-standing measurement problem in quantum mechanics by modifying the theory's dynamics to include objective wave function collapses. These collapses occur randomly in space, bridging the gap between quantum and classical behavior. A central feature of these models is their dependence on mass density, which directly influences how and when collapse events occur. In this work, we explore a generalized framework in which the collapse dynamics depend on arbitrary functions of the mass density, extending previous models. We analyze the theoretical consistency of these generalizations, investigate their predictions, and compare them with experimental data. Our findings show that only a limited range of mass-dependence functions are viable, with significant implications for the future development and empirical testability of collapse-based models. Importantly, they also indicate that a well-justified model denoted here as PSL shows much more resilience to experimental falsification than standard collapse models.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Hybrid Classical-Quantum Newtonian Gravity with stable vacuum [0.0]
We investigate a hybrid classical-quantum model in which classical Newtonian gravity emerges from collapses of the mass density operator.<n>GPSL ensures vacuum stability; this, together with its applicability to identical particles and fields, makes it a promising candidate for a relativistic generalization.<n>We provide explicit examples, including the dynamics of a single particle and a rigid sphere, to illustrate the distinctive phenomenology of the model.
arXiv Detail & Related papers (2025-02-07T15:19:13Z) - Quantum Avalanches in $\mathbb{Z}_2$-preserving Interacting Ising Majorana Chain [13.135604356093193]
Recent numerical works have revealed the instability of many-body localized (MBL) phase in disordered quantum many-body systems.
This instability arises from Griffith regions that occur at the limit, which rapidly thermalize and affect the surrounding typical MBL regions.
We show that both MBL paramagnetic phase and MBL spin-glass phase are unstable at finite sizes.
arXiv Detail & Related papers (2025-01-10T15:54:26Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.<n>Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)<n>By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Convergence of Kinetic Langevin Monte Carlo on Lie groups [21.76159063788814]
We propose a Lie-group MCMC sampler, by delicately discretizing the resulting kinetic-Langevin-type sampling dynamics.
This is the first convergence result for kinetic Langevin on curved spaces, and also the first quantitative result that requires no convexity or, at least not explicitly, any common relaxation such as isoperimetry.
arXiv Detail & Related papers (2024-03-18T17:50:20Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.<n>One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - A proposal for a new kind of spontaneous collapse model [0.0]
We propose a new kind of non-relativistic spontaneous collapse model based on the idea of collapse points situated at fixed spacetime coordinates.
We show that it can lead to a dynamics quite similar to that of the GRW model while also naturally solving the problem of indistinguishable particles.
We show how our proposed model solves the measurement problem in a manner conceptually similar to the GRW model.
arXiv Detail & Related papers (2023-08-08T17:25:24Z) - Towards Causal Representation Learning and Deconfounding from Indefinite
Data [17.793702165499298]
Non-statistical data (e.g., images, text, etc.) encounters significant conflicts in terms of properties and methods with traditional causal data.
We redefine causal data from two novel perspectives and then propose three data paradigms.
We implement the above designs as a dynamic variational inference model, tailored to learn causal representation from indefinite data.
arXiv Detail & Related papers (2023-05-04T08:20:37Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Observability of spontaneous collapse in flavor oscillations and its
relation to the CP and CPT symmetries [0.0]
Spontaneous collapse models aim at solving the measurement problem of quantum mechanics.
We study how the violation of the $mathcalCP$ symmetry in mixing changes the spontaneous collapse effect on flavor oscillations.
arXiv Detail & Related papers (2022-08-30T16:48:21Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Continuous-Variable Entanglement through Central Forces: Application to
Gravity between Quantum Masses [4.362023116605902]
We show that entanglement in such experiments is sensitive to initial relative momentum only when the system evolves into non-Gaussian states.
From a quantum information perspective, the results find applications as a momentum witness of non-Gaussian entanglement.
arXiv Detail & Related papers (2022-06-26T15:07:14Z) - Environmental Collapse Models [0.0]
In principle, isolated systems comprising only massive particles could evolve unitarily indefinitely in such models.
Since photons and gravitons are ubiquitous and scatter from massive particles, dynamical collapses of the former will effectively induce collapses of the latter.
We argue that these environmental collapse models may be consistent with quantum experiments on microscopic systems.
arXiv Detail & Related papers (2022-06-06T16:11:19Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Density dynamics in the mass-imbalanced Hubbard chain [0.0]
We consider two mutually interacting fermionic particle species on a one-dimensional lattice.
We study how the mass ratio $eta$ between the two species affects the dynamics of the particles.
arXiv Detail & Related papers (2020-04-28T15:38:02Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.