論文の概要: Pressure Field Reconstruction with SIREN: A Mesh-Free Approach for Image Velocimetry in Complex Noisy Environments
- arxiv url: http://arxiv.org/abs/2501.17987v1
- Date: Wed, 29 Jan 2025 20:49:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:15.551602
- Title: Pressure Field Reconstruction with SIREN: A Mesh-Free Approach for Image Velocimetry in Complex Noisy Environments
- Title(参考訳): SIRENを用いた圧力場再構成:複雑な雑音環境における画像速度測定のためのメッシュフリーアプローチ
- Authors: Renato F. Miotto, William R. Wolf, Fernando Zigunov,
- Abstract要約: 本研究は,SIREN(Sinusoidal Representation Network)を用いた画像速度測定データからの圧力場再構成のための新しいアプローチを提案する。
ノイズの多い環境での暗黙の神経表現としての有効性とメッシュのない性質を強調している。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: This work presents a novel approach for pressure field reconstruction from image velocimetry data using SIREN (Sinusoidal Representation Network), emphasizing its effectiveness as an implicit neural representation in noisy environments and its mesh-free nature. While we briefly assess two recently proposed methods - one-shot matrix-omnidirectional integration (OS-MODI) and Green's function integral (GFI) - the primary focus is on the advantages of the SIREN approach. The OS-MODI technique performs well in noise-free conditions and with structured meshes but struggles when applied to unstructured meshes with high aspect ratio. Similarly, the GFI method encounters difficulties due to singularities inherent from the Newtonian kernel. In contrast, the proposed SIREN approach is a mesh-free method that directly reconstructs the pressure field, bypassing the need for an intrinsic grid connectivity and, hence, avoiding the challenges associated with ill-conditioned cells and unstructured meshes. This provides a distinct advantage over traditional mesh-based methods. Moreover, it is shown that changes in the architecture of the SIREN can be used to filter out inherent noise from velocimetry data. This work positions SIREN as a robust and versatile solution for pressure reconstruction, particularly in noisy environments characterized by the absence of mesh structure, opening new avenues for innovative applications in this field.
- Abstract(参考訳): 本研究では,SIREN (Sinusoidal Representation Network) を用いた画像速度測定データからの圧力場再構成手法を提案する。
最近提案された2つの手法(OS-MODI)とグリーン関数積分(GFI)を短時間で評価する一方で、SIRENアプローチの利点に重点を置いている。
OS-MODI技術は、非構造メッシュに対して高アスペクト比の非構造メッシュに適用した場合、ノイズフリー条件や構造化メッシュでよく機能する。
同様に、GFI法はニュートン核に固有の特異性のために困難に遭遇する。
対照的に、SIRENアプローチは、本質的なグリッド接続の必要性を回避し、不調なセルや非構造的なメッシュに関連する問題を回避することにより、圧力場を直接再構築するメッシュフリー手法である。
これは従来のメッシュベースのメソッドに対して、明確なアドバンテージを提供します。
さらに、SIRENのアーキテクチャの変化は、速度測定データから固有のノイズを除去するのに有効であることを示した。
この研究は、SIRENを圧力再構成のための堅牢で汎用的なソリューションとして位置づけ、特にメッシュ構造の欠如を特徴とするノイズの多い環境において、この分野における革新的な応用のための新たな道を開く。
関連論文リスト
- Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks [3.6270672925388263]
トレーニングされた注意に基づくトランスフォーマーネットワークは、Richtmyer-Meshkoff不安定性によって与えられる複雑なトポロジーを確実に回復することができる。
このアプローチは、ICFのような二重貝殻流体力学シミュレーションで実証される。
論文 参考訳(メタデータ) (2024-08-02T03:02:39Z) - Neural NeRF Compression [19.853882143024]
最近のNeRFは、レンダリング品質とスピードを改善するために機能グリッドを利用している。
これらの表現は、大きなストレージオーバーヘッドをもたらす。
本稿では,グリッドベースNeRFモデルを効率よく圧縮する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T09:12:26Z) - Hybrid Spatial-spectral Neural Network for Hyperspectral Image Denoising [10.588958070064916]
本稿では,CNNとTransformer特性にインスパイアされたハイブリッド空間スペクトル復調ネットワークを提案する。
提案手法は空間的およびスペクトル的再構成における最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-06-13T03:27:01Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Neural Acoustic Context Field: Rendering Realistic Room Impulse Response
With Neural Fields [61.07542274267568]
このレターでは、音声シーンをパラメータ化するためのNACFと呼ばれる新しいニューラルネットワークコンテキストフィールドアプローチを提案する。
RIRのユニークな性質により、時間相関モジュールとマルチスケールエネルギー崩壊基準を設計する。
実験の結果,NACFは既存のフィールドベース手法よりも顕著なマージンで優れていた。
論文 参考訳(メタデータ) (2023-09-27T19:50:50Z) - Noise Injection Node Regularization for Robust Learning [0.0]
ノイズインジェクションノード規則化(NINR)は、トレーニング期間中に、構造化されたノイズをディープニューラルネットワーク(DNN)に注入する手法である。
本研究は、NINRの下で訓練されたフィードフォワードDNNに対する各種試験データ摂動に対するロバスト性を大幅に改善する理論的および実証的な証拠を示す。
論文 参考訳(メタデータ) (2022-10-27T20:51:15Z) - NR-DFERNet: Noise-Robust Network for Dynamic Facial Expression
Recognition [1.8604727699812171]
DFERタスクにおけるノイズフレームの干渉を低減するために、ノイズロスト動的表情認識ネットワーク(NR-DFERNet)を提案する。
具体的には、空間的段階において、より識別的な空間的特徴を学習するために静的特徴に動的特徴を導入する動的静的融合モジュール(DSF)を考案する。
対象の無関係なフレームの影響を抑えるために,時間段階の変換器に新しい動的クラストークン(DCT)を導入する。
論文 参考訳(メタデータ) (2022-06-10T10:17:30Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
本稿では,一般のSISRタスクを未知の劣化で扱うためのモデルベースunsupervised SISR法を提案する。
提案手法は, より小さなモデル (0.34M vs. 2.40M) だけでなく, より高速な技術 (SotA) 法 (約1dB PSNR) の現況を明らかに超えることができる。
論文 参考訳(メタデータ) (2021-07-02T11:55:40Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。