論文の概要: IROAM: Improving Roadside Monocular 3D Object Detection Learning from Autonomous Vehicle Data Domain
- arxiv url: http://arxiv.org/abs/2501.18162v1
- Date: Thu, 30 Jan 2025 06:10:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:13.744044
- Title: IROAM: Improving Roadside Monocular 3D Object Detection Learning from Autonomous Vehicle Data Domain
- Title(参考訳): IROAM:自律走行データ領域からの路面単眼物体検出学習の改善
- Authors: Zhe Wang, Xiaoliang Huo, Siqi Fan, Jingjing Liu, Ya-Qin Zhang, Yan Wang,
- Abstract要約: 意味幾何学を分離したコントラスト学習フレームワークであるIROAMを提案する。
IROAMは車側と道路側のデータを同時に入力する。
道路側検出器の性能向上におけるIROAMの有効性を示す実験を行った。
- 参考スコア(独自算出の注目度): 16.423900628384427
- License:
- Abstract: In autonomous driving, The perception capabilities of the ego-vehicle can be improved with roadside sensors, which can provide a holistic view of the environment. However, existing monocular detection methods designed for vehicle cameras are not suitable for roadside cameras due to viewpoint domain gaps. To bridge this gap and Improve ROAdside Monocular 3D object detection, we propose IROAM, a semantic-geometry decoupled contrastive learning framework, which takes vehicle-side and roadside data as input simultaneously. IROAM has two significant modules. In-Domain Query Interaction module utilizes a transformer to learn content and depth information for each domain and outputs object queries. Cross-Domain Query Enhancement To learn better feature representations from two domains, Cross-Domain Query Enhancement decouples queries into semantic and geometry parts and only the former is used for contrastive learning. Experiments demonstrate the effectiveness of IROAM in improving roadside detector's performance. The results validate that IROAM has the capabilities to learn cross-domain information.
- Abstract(参考訳): 自律運転では、エゴ車両の知覚能力は道路脇のセンサーで改善され、環境の全体像を提供することができる。
しかし、車載カメラ用に設計された既存の単眼検出方法は、視点領域のギャップのため、路面カメラには適さない。
このギャップを埋め, ROAdside Monocular 3Dオブジェクト検出を改善するために, 車両側と道路側のデータを同時に入力として取り込む, セマンティックジオメトリを分離したコントラスト学習フレームワークであるIROAMを提案する。
IROAMには2つの重要なモジュールがある。
In-Domain Query Interactionモジュールはトランスフォーマーを使用して各ドメインのコンテンツと深度情報を学び、オブジェクトクエリを出力する。
クロスドメインクエリの強化 2つのドメインからより優れた機能表現を学ぶために、クロスドメインクエリの強化はクエリをセマンティックな部分と幾何学的な部分に分離する。
道路側検出器の性能向上におけるIROAMの有効性を示す実験を行った。
その結果、IROAMにはクロスドメイン情報を学ぶ能力があることがわかった。
関連論文リスト
- Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System [0.0]
本稿では,自律走行車認識システムにおける3次元物体検出のためのカメラとレーダーセンサの融合問題に対する新しいアプローチを提案する。
我々のアプローチは、ディープラーニングの最近の進歩に基づいており、両方のセンサーの強度を活用して物体検出性能を向上させる。
提案手法は単一センサ・ソリューションよりも優れた性能を実現し,他のトップレベルの融合手法と直接競合できることを示す。
論文 参考訳(メタデータ) (2024-04-25T12:04:31Z) - UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps [2.79552147676281]
3次元物体検出(UADA3D)のための教師なし反転領域適応法について紹介する。
様々な適応シナリオにおいて有効性を示し、自動運転車と移動ロボットの両方の領域で顕著に改善されていることを示す。
私たちのコードはオープンソースで、まもなく利用可能になります。
論文 参考訳(メタデータ) (2024-03-26T12:08:14Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - Cross-Domain Car Detection Model with Integrated Convolutional Block
Attention Mechanism [3.3843451892622576]
統合畳み込みブロックアテンション機構を用いたクロスドメイン車目標検出モデルを提案する。
実験の結果,我々のフレームワークを使わずに,モデルの性能が40%向上したことがわかった。
論文 参考訳(メタデータ) (2023-05-31T17:28:13Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Camera-Tracklet-Aware Contrastive Learning for Unsupervised Vehicle
Re-Identification [4.5471611558189124]
車両識別ラベルのないマルチカメラ・トラックレット情報を用いたカメラ・トラックレット対応コントラスト学習(CTACL)を提案する。
提案したCTACLは、全車両画像(全車両画像)を複数のカメラレベルの画像に分割し、コントラスト学習を行う。
本稿では,ビデオベースおよび画像ベース車両のRe-IDデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2021-09-14T02:12:54Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
LiDAR-カメラ融合に基づく3Dオブジェクト検出は、自動運転の新たな研究テーマになりつつある。
本稿では,LiDARの鳥眼ビュー,LiDARレンジビュー,カメラビューイメージを3Dオブジェクト検出の入力として利用する,単一ステージ多視点融合フレームワークを提案する。
これら2つのコンポーネントを統合するために,MVAF-Netというエンドツーエンドの学習ネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-02T00:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。