論文の概要: Machine Learning Fairness for Depression Detection using EEG Data
- arxiv url: http://arxiv.org/abs/2501.18192v1
- Date: Thu, 30 Jan 2025 08:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:15:23.323534
- Title: Machine Learning Fairness for Depression Detection using EEG Data
- Title(参考訳): 脳波データを用いた抑うつ検出のための機械学習フェアネス
- Authors: Angus Man Ho Kwok, Jiaee Cheong, Sinan Kalkan, Hatice Gunes,
- Abstract要約: 本稿では,脳波データを用いた抑うつ検出のための機械学習フェアネスを評価するための最初の試みについて述べる。
我々は,CNN,Long Short-Term Memory(LSTM)ネットワーク,Gated Recurrent Unit(GRU)ネットワークなど,さまざまなディープラーニングアーキテクチャを用いて実験を行う。
実験結果から,既存の脳波データセットや抑うつ検出アルゴリズムにバイアスが存在することが明らかとなった。
- 参考スコア(独自算出の注目度): 14.61416119202288
- License:
- Abstract: This paper presents the very first attempt to evaluate machine learning fairness for depression detection using electroencephalogram (EEG) data. We conduct experiments using different deep learning architectures such as Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks across three EEG datasets: Mumtaz, MODMA and Rest. We employ five different bias mitigation strategies at the pre-, in- and post-processing stages and evaluate their effectiveness. Our experimental results show that bias exists in existing EEG datasets and algorithms for depression detection, and different bias mitigation methods address bias at different levels across different fairness measures.
- Abstract(参考訳): 本稿では,脳波データを用いた抑うつ検出のための機械学習フェアネスを評価するための最初の試みについて述べる。
我々は、畳み込みニューラルネットワーク(CNN)、Long Short-Term Memory(LSTM)ネットワーク、Mumtaz、MODMA、Restの3つのEEGデータセットにまたがるGated Recurrent Unit(GRU)ネットワークなど、さまざまなディープラーニングアーキテクチャを用いて実験を行う。
我々は,前処理段階,内処理段階,後処理段階の5つの異なるバイアス緩和戦略を採用し,その効果を評価する。
実験結果から,既存の脳波データセットや抑うつ検出アルゴリズムにバイアスが存在することが明らかとなった。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
側頭葉てんかんの3分の1は薬剤耐性を示す。
抗敗血症薬開発の鍵となるのはてんかん発作の検出と定量化である。
本研究では,脳波信号に適用した深層学習モデルに基づく発作検出パイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-04T12:52:37Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - EEG Decoding for Datasets with Heterogenous Electrode Configurations
using Transfer Learning Graph Neural Networks [5.349852254138086]
記録装置や電極配置のばらつきのため、研究室や同じ研究室内で収集されたデータの組み合わせは困難である。
我々は,グラフニューラルネットワーク(GNN)と非侵襲型運動画像(MI)脳波デコーディングのための転送学習手法を組み合わせた,新しい機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-06-20T16:29:00Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
てんかん患者の治療と管理には, 精垂型鑑別が不可欠である。
本稿では,MP-SeizNetを用いた新しいマルチパス・アセプション型ディープラーニング・ネットワークを提案する。
MP-SeizNetは、畳み込みニューラルネットワーク(CNN)と、注意機構を備えた双方向長短期記憶ニューラルネットワーク(Bi-LSTM)で構成されている。
論文 参考訳(メタデータ) (2022-11-09T01:07:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
本稿では,複数の周波数/時間範囲における特徴表現を探索する深層多スケールニューラルネットワークを提案する。
スペクトル時間情報を用いた脳波信号の表現により,提案手法を多種多様なパラダイムに応用することができる。
論文 参考訳(メタデータ) (2020-03-02T04:06:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。