論文の概要: Large Language Models for Code Analysis: Do LLMs Really Do Their Job?
- arxiv url: http://arxiv.org/abs/2310.12357v2
- Date: Tue, 5 Mar 2024 23:30:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 17:54:35.093866
- Title: Large Language Models for Code Analysis: Do LLMs Really Do Their Job?
- Title(参考訳): コード分析のための大規模言語モデル: LLMは実際に仕事をするのか?
- Authors: Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang,
Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang and Houman Homayoun
- Abstract要約: 大規模言語モデル(LLM)は、自然言語理解とプログラミングコード処理タスクの領域において大きな可能性を証明している。
本稿では、コード解析タスクの実行におけるLLMの能力を総合的に評価する。
- 参考スコア(独自算出の注目度): 13.48555476110316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated significant potential in the
realm of natural language understanding and programming code processing tasks.
Their capacity to comprehend and generate human-like code has spurred research
into harnessing LLMs for code analysis purposes. However, the existing body of
literature falls short in delivering a systematic evaluation and assessment of
LLMs' effectiveness in code analysis, particularly in the context of obfuscated
code.
This paper seeks to bridge this gap by offering a comprehensive evaluation of
LLMs' capabilities in performing code analysis tasks. Additionally, it presents
real-world case studies that employ LLMs for code analysis. Our findings
indicate that LLMs can indeed serve as valuable tools for automating code
analysis, albeit with certain limitations. Through meticulous exploration, this
research contributes to a deeper understanding of the potential and constraints
associated with utilizing LLMs in code analysis, paving the way for enhanced
applications in this critical domain.
- Abstract(参考訳): 大規模言語モデル(llm)は、自然言語理解とプログラミングコード処理タスクの領域において大きな可能性を示している。
人間のようなコードを理解して生成する能力は、コード解析の目的のためにLLMを活用する研究を刺激している。
しかし、既存の文献は、特に難読化コードの文脈において、コード解析におけるLLMの有効性の体系的な評価と評価を提供するには不足している。
本稿では,このギャップを埋めるために,コード解析タスクの実行においてLLMの能力を包括的に評価する手法を提案する。
さらに、コード分析にllmを使用する実世界のケーススタディも提示する。
以上の結果から,LLMはコード解析の自動化に有用なツールでありながら,一定の制限を課すことが示唆された。
この研究は、精巧な調査を通じて、コード分析におけるLLMの利用に関連する可能性と制約の深い理解に寄与し、この重要な領域におけるアプリケーション強化の道を開いた。
関連論文リスト
- Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
codellm-devkit (以下, CLDK') は,プログラム解析のプロセスを大幅に単純化したオープンソースライブラリである。
CLDKは開発者に対して直感的でユーザフレンドリなインターフェースを提供しています。
論文 参考訳(メタデータ) (2024-10-16T20:05:59Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic Analysis (TA)は、多くの分野や分野における定性的データを解析するために広く使われている。
ヒューマンコーダはデータの解釈とコーディングを複数のイテレーションで開発し、より深くする。
In-context Learning (ICL) を用いたTAを実現するための人間-LLM協調フレームワーク(LLM-in-the-loop)を提案する。
論文 参考訳(メタデータ) (2023-10-23T17:05:59Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - LMs: Understanding Code Syntax and Semantics for Code Analysis [25.508254718438636]
我々は,大規模言語モデル(LLM)の機能と,ソフトウェア工学におけるコード解析の限界を評価する。
GPT4, GPT3.5, StarCoder, CodeLlama-13b-インストラクトという,最先端の4つの基礎モデルを採用している。
論文 参考訳(メタデータ) (2023-05-20T08:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。