Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs Fine-tuning
- URL: http://arxiv.org/abs/2409.15361v1
- Date: Wed, 18 Sep 2024 08:04:24 GMT
- Title: Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs Fine-tuning
- Authors: Essa Jan, Nouar AlDahoul, Moiz Ali, Faizan Ahmad, Fareed Zaffar, Yasir Zaki,
- Abstract summary: Red teaming/Safety alignment efforts show that fine-tuning models on benign (non-harmful) data could compromise safety.
This paper explores the task-wise safety degradation due to fine-tuning on downstream tasks such as summarization, code generation, translation, and classification.
Our work underscores the need for generalized alignment measures to ensure safer and more robust models.
- Score: 1.3307486544794784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in Large Language Models (LLMs) have led to their adoption across a wide range of tasks, ranging from code generation to machine translation and sentiment analysis, etc. Red teaming/Safety alignment efforts show that fine-tuning models on benign (non-harmful) data could compromise safety. However, it remains unclear to what extent this phenomenon is influenced by different variables, including fine-tuning task, model calibrations, etc. This paper explores the task-wise safety degradation due to fine-tuning on downstream tasks such as summarization, code generation, translation, and classification across various calibration. Our results reveal that: 1) Fine-tuning LLMs for code generation and translation leads to the highest degradation in safety guardrails. 2) LLMs generally have weaker guardrails for translation and classification, with 73-92% of harmful prompts answered, across baseline and other calibrations, falling into one of two concern categories. 3) Current solutions, including guards and safety tuning datasets, lack cross-task robustness. To address these issues, we developed a new multitask safety dataset effectively reducing attack success rates across a range of tasks without compromising the model's overall helpfulness. Our work underscores the need for generalized alignment measures to ensure safer and more robust models.
Related papers
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - Superficial Safety Alignment Hypothesis [8.297367440457508]
We propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment should teach an otherwise unsafe model to choose the correct reasoning direction.
We identify four types of attribute-critical components in safety-aligned large language models (LLMs)
Our findings show that freezing certain safety-critical components 7.5% during fine-tuning allows the model to retain its safety attributes while adapting to new tasks.
arXiv Detail & Related papers (2024-10-07T19:53:35Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models [39.56233272612982]
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to jailbreaking attacks.
Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning.
To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories.
arXiv Detail & Related papers (2024-02-03T16:43:42Z) - Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack [20.551730528019338]
Are mainstream NLP tasks adequately aligned with safety consideration?
Our study reveals significant disparities in the safety alignment of various NLP tasks.
Attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integrity of tasks traditionally deemed more robust.
arXiv Detail & Related papers (2023-12-12T01:39:29Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
This study investigates the substantial discrepancy in performance between multiple-choice questions and open-ended questions.
Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization.
arXiv Detail & Related papers (2023-11-10T08:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.