DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models
- URL: http://arxiv.org/abs/2501.18590v1
- Date: Thu, 30 Jan 2025 18:59:11 GMT
- Title: DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models
- Authors: Ruofan Liang, Zan Gojcic, Huan Ling, Jacob Munkberg, Jon Hasselgren, Zhi-Hao Lin, Jun Gao, Alexander Keller, Nandita Vijaykumar, Sanja Fidler, Zian Wang,
- Abstract summary: We introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering.
Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
- Score: 83.28670336340608
- License:
- Abstract: Understanding and modeling lighting effects are fundamental tasks in computer vision and graphics. Classic physically-based rendering (PBR) accurately simulates the light transport, but relies on precise scene representations--explicit 3D geometry, high-quality material properties, and lighting conditions--that are often impractical to obtain in real-world scenarios. Therefore, we introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering within a holistic framework. Leveraging powerful video diffusion model priors, the inverse rendering model accurately estimates G-buffers from real-world videos, providing an interface for image editing tasks, and training data for the rendering model. Conversely, our rendering model generates photorealistic images from G-buffers without explicit light transport simulation. Experiments demonstrate that DiffusionRenderer effectively approximates inverse and forwards rendering, consistently outperforming the state-of-the-art. Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
Related papers
- Materialist: Physically Based Editing Using Single-Image Inverse Rendering [50.39048790589746]
We present a method combining a learning-based approach with progressive differentiable rendering.
Our method achieves more realistic light material interactions, accurate shadows, and global illumination.
We also propose a method for material transparency editing that operates effectively without requiring full scene geometry.
arXiv Detail & Related papers (2025-01-07T11:52:01Z) - GenLit: Reformulating Single-Image Relighting as Video Generation [44.409962561291216]
We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video generation model.
We find that a model fine-tuned on only a small synthetic dataset is able to generalize to real images.
arXiv Detail & Related papers (2024-12-15T15:40:40Z) - Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering [56.68286440268329]
correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials.
We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process.
Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes.
arXiv Detail & Related papers (2024-08-19T05:15:45Z) - FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces [21.946327323788275]
3D rendering of dynamic face is a challenging problem.
We present a novel representation that enables high-quality rendering of an actor's dynamic facial performances.
arXiv Detail & Related papers (2024-04-22T00:44:13Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Inverse Rendering of Translucent Objects using Physical and Neural
Renderers [13.706425832518093]
In this work, we propose an inverse model that estimates 3D shape, spatially-varying reflectance, homogeneous scattering parameters, and an environment illumination jointly from only a pair of captured images of a translucent object.
Because two reconstructions are differentiable, we can compute a reconstruction loss to assist parameter estimation.
We constructed a large-scale synthetic dataset of translucent objects, which consists of 117K scenes.
arXiv Detail & Related papers (2023-05-15T04:03:11Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.