論文の概要: A Radiance Field Loss for Fast and Simple Emissive Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2501.18627v1
- Date: Mon, 27 Jan 2025 13:30:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:00:56.580082
- Title: A Radiance Field Loss for Fast and Simple Emissive Surface Reconstruction
- Title(参考訳): 高速かつ簡便な表面再構成のための放射界損失
- Authors: Ziyi Zhang, Nicolas Roussel, Thomas Müller, Tizian Zeltner, Merlin Nimier-David, Fabrice Rousselle, Wenzel Jakob,
- Abstract要約: 本稿では,映像を表面的シーン表現に変換する手法を提案する。
我々は、光線に沿って放射場を統合し、その結果のイメージを監督する代わりに、損失関数の微妙ながら衝撃的な修正を導入する。
- 参考スコア(独自算出の注目度): 19.583904151537443
- License:
- Abstract: We present a fast and simple technique to convert images into an emissive surface-based scene representation. Building on existing emissive volume reconstruction algorithms, we introduce a subtle yet impactful modification of the loss function requiring changes to only a few lines of code: instead of integrating the radiance field along rays and supervising the resulting images, we project the training images into the scene to directly supervise the spatio-directional radiance field. The primary outcome of this change is the complete removal of alpha blending and ray marching from the image formation model, instead moving these steps into the loss computation. In addition to promoting convergence to surfaces, this formulation assigns explicit semantic meaning to 2D subsets of the radiance field, turning them into well-defined emissive surfaces. We finally extract a level set from this representation, which results in a high-quality emissive surface model. Our method retains much of the speed and quality of the baseline algorithm. For instance, a suitably modified variant of Instant~NGP maintains comparable computational efficiency, while achieving an average PSNR that is only 0.1 dB lower. Most importantly, our method generates explicit surfaces in place of an exponential volume, doing so with a level of simplicity not seen in prior work.
- Abstract(参考訳): 本稿では,映像を表面的シーン表現に変換する,高速でシンプルな手法を提案する。
既存の容積再構成アルゴリズムをベースとして,数行のコードに変化を必要とする損失関数の微妙な修正を導入し,レイディアンスフィールドの統合や画像の監視を行う代わりに,トレーニング画像をシーンに投影し,スパンディエンスフィールドを直接監視する。
この変更の主な結果は、画像形成モデルからアルファブレンディングとレイマーチを完全に取り除き、代わりにこれらのステップを損失計算に移動させることである。
曲面への収束を促進することに加えて、この定式化は、放射場の2次元部分集合に明示的な意味を割り当て、それらをよく定義された放射曲面に変換する。
最終的に、この表現から設定されたレベルを抽出し、その結果、高品質な放射面モデルが得られる。
提案手法はベースラインアルゴリズムの速度と品質の多くを保っている。
例えば、Instant~NGPの適切な修正版は計算効率を同等に保ち、平均PSNRは0.1dB以下である。
最も重要なことは,本手法が指数体積の代わりに明示的な表面を生成することである。
関連論文リスト
- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
本稿では,レンダリングに偏りをもたらす近似を回避し,最適化に用いた勾配を求める手法を提案する。
これらのバイアスを除去することで、逆レンダリングに基づくレーダランスキャッシュの一般化が向上し、スペクトル反射のような光輸送効果に挑戦する際の品質が向上することを示す。
論文 参考訳(メタデータ) (2024-09-09T17:59:57Z) - Haar Nuclear Norms with Applications to Remote Sensing Imagery Restoration [53.68392692185276]
本稿では,Har Nuclear norm (HNN) という,高効率かつ効率的なリモートセンシング画像復元のための新しい低ランク正規化用語を提案する。
2次元前方スライス-ワイド・ハール離散ウェーブレット変換から導出されるウェーブレット係数の低ランク特性を利用する。
ハイパースペクトル像の着色, マルチテンポラル画像雲の除去, ハイパースペクトル像の脱色実験により, HNNの可能性が明らかとなった。
論文 参考訳(メタデータ) (2024-07-11T13:46:47Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - DPPE: Dense Pose Estimation in a Plenoxels Environment using Gradient Approximation [1.6512610612587693]
Plenoxels環境上で機能する高密度ポーズ推定アルゴリズムDPPEを提案する。
近年の神経放射場技術の発展により、環境表現の強力なツールであることが示されている。
論文 参考訳(メタデータ) (2024-03-16T02:22:10Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Differentiable Rendering with Reparameterized Volume Sampling [2.717399369766309]
ビュー合成において、ニューラルネットワークは、シーン画像のスパースセットに基づいて、基礎となる密度と放射場を近似する。
このレンダリングアルゴリズムは、完全に微分可能であり、フィールドの勾配に基づく最適化を容易にする。
逆変換サンプリングに基づく単純なエンドツーエンドの微分可能サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T19:56:50Z) - Estimating Neural Reflectance Field from Radiance Field using Tree
Structures [29.431165709718794]
本研究では,物体のニューラルリフレクタンス場(NReF)を,未知の照明下での多視点画像の集合から推定する手法を提案する。
NReFは3次元形状と物体の視認性を表しており、画像のみから推定することは困難である。
提案手法は,Neural Radiance Field (NeRF) をプロキシ表現として利用することでこの問題を解決し,さらに分解を行う。
論文 参考訳(メタデータ) (2022-10-09T10:21:31Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
光音響計算トモグラフィ(PACT)は、PA信号検出のための超音波トランスデューサアレイでターゲットを照らすために、焦点のない大面積の光を使用する。
限定ビュー問題は、幾何学的条件の制限により、PACTの低画質の画像を引き起こす可能性がある。
数学的変動モデルとディープラーニングを組み合わせたモデルベース手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T02:05:58Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。