論文の概要: Bayesian Optimization with Preference Exploration by Monotonic Neural Network Ensemble
- arxiv url: http://arxiv.org/abs/2501.18792v1
- Date: Thu, 30 Jan 2025 22:50:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:47.836156
- Title: Bayesian Optimization with Preference Exploration by Monotonic Neural Network Ensemble
- Title(参考訳): 単調ニューラルネットワークアンサンブルによるベイズ最適化
- Authors: Hanyang Wang, Juergen Branke, Matthias Poloczek,
- Abstract要約: 本稿では,ニューラルネットワークアンサンブルを実用的サロゲートモデルとして用いることを提案する。
このアプローチは自然に単調性を統合し、ペア比較データをサポートする。
アブレーション研究は、パフォーマンス向上における単調性の重要性を強調している。
- 参考スコア(独自算出の注目度): 3.004066195320147
- License:
- Abstract: Many real-world black-box optimization problems have multiple conflicting objectives. Rather than attempting to approximate the entire set of Pareto-optimal solutions, interactive preference learning allows to focus the search on the most relevant subset. However, few previous studies have exploited the fact that utility functions are usually monotonic. In this paper, we address the Bayesian Optimization with Preference Exploration (BOPE) problem and propose using a neural network ensemble as a utility surrogate model. This approach naturally integrates monotonicity and supports pairwise comparison data. Our experiments demonstrate that the proposed method outperforms state-of-the-art approaches and exhibits robustness to noise in utility evaluations. An ablation study highlights the critical role of monotonicity in enhancing performance.
- Abstract(参考訳): 多くの実世界のブラックボックス最適化問題には、複数の矛盾する目的がある。
パレート最適解の集合全体を近似しようとするのではなく、インタラクティブな選好学習により、最も関連性の高い部分集合に探索を集中することができる。
しかし、実用関数が通常単調であるという事実を利用する以前の研究はほとんどない。
本稿では,ベイズ最適化(BOPE)問題に対処し,ニューラルネットワークアンサンブルを実用的代理モデルとして用いることを提案する。
このアプローチは自然に単調性を統合し、ペア比較データをサポートする。
本研究では,提案手法が最先端手法より優れ,実用性評価におけるノイズに対する堅牢性を示すことを示す。
アブレーション研究は、パフォーマンス向上における単調性の重要性を強調している。
関連論文リスト
- Multi-Objective Causal Bayesian Optimization [2.5311562666866494]
マルチターゲット因果グラフ内の最適介入を特定するために,MO-CBO(Multi-Objective Causal Bayesian Optimization)を提案する。
我々はMO-CBOを複数の従来の多目的最適化タスクに分解可能であることを示す。
提案手法は,合成と実世界の因果グラフの両方で検証する。
論文 参考訳(メタデータ) (2025-02-20T17:26:16Z) - Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
CMOBOは、原則的に実現可能な領域内の多目的最適化と、実現可能な領域の学習のバランスをとる。
理論的正当化と実証的証拠の両方を提供し、様々な合成ベンチマークや実世界の応用に対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-11-06T03:38:00Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
対象値が入力集合とサブセットの両方に条件付けされている場合、スーパーセットのテクスティ不変な統計量を関心のサブセットに組み込むことが不可欠であることを示す。
これにより、出力値がサブセットとその対応するスーパーセットの置換に不変であることを保証する。
論文 参考訳(メタデータ) (2024-02-05T16:09:35Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
膨大な多目的最適化問題は、多くの現実世界のアプリケーションで見られる。
本稿では,MOBOのパレート集合全体を近似する学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T09:41:54Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。