論文の概要: Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
- arxiv url: http://arxiv.org/abs/2411.03641v1
- Date: Wed, 06 Nov 2024 03:38:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:22.263258
- Title: Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
- Title(参考訳): 最適制約推定による制約付き多目的ベイズ最適化
- Authors: Diantong Li, Fengxue Zhang, Chong Liu, Yuxin Chen,
- Abstract要約: CMOBOは、原則的に実現可能な領域内の多目的最適化と、実現可能な領域の学習のバランスをとる。
理論的正当化と実証的証拠の両方を提供し、様々な合成ベンチマークや実世界の応用に対するアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 10.77641869521259
- License:
- Abstract: Multi-objective Bayesian optimization has been widely adopted in scientific experiment design, including drug discovery and hyperparameter optimization. In practice, regulatory or safety concerns often impose additional thresholds on certain attributes of the experimental outcomes. Previous work has primarily focused on constrained single-objective optimization tasks or active search under constraints. We propose CMOBO, a sample-efficient constrained multi-objective Bayesian optimization algorithm that balances learning of the feasible region (defined on multiple unknowns) with multi-objective optimization within the feasible region in a principled manner. We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
- Abstract(参考訳): 多目的ベイズ最適化は、薬物発見やハイパーパラメータ最適化を含む科学実験設計において広く採用されている。
実際には、規制や安全に関する懸念は、しばしば実験結果の特定の属性に追加の閾値を課す。
これまでは主に制約付き単目的最適化タスクや制約下でのアクティブ検索に重点を置いてきた。
CMOBOは、複数の未知領域に定義された)実現可能な領域の学習と、原則的に実現可能な領域内での多目的最適化とをバランスさせる、サンプル効率のよい制約付き多目的ベイズ最適化アルゴリズムである。
理論的正当化と実証的証拠の両方を提供し、様々な合成ベンチマークや実世界の応用に対するアプローチの有効性を実証する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Differentiable Multi-Target Causal Bayesian Experimental Design [43.76697029708785]
本稿では,ベイズ最適設計問題に対する勾配に基づくアプローチを導入し,バッチ環境で因果モデルを学習する。
既存の手法は、一連の実験を構築するためにグリーディ近似に依存している。
そこで本稿では,最適介入対象ペアの集合を取得するための,概念的にシンプルな勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-21T11:32:59Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
高価な関数評価を用いたマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
UeMOと呼ばれる新しい不確実性対応検索フレームワークを提案し、評価のための入力シーケンスを効率的に選択する。
論文 参考訳(メタデータ) (2022-04-12T16:50:48Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
エンジニアリング設計のような現実的なアプリケーションでは、設計者は複数の目的と入力の不確実性を考慮に入れたい場合が多い。
入力の不確実性を考慮した多目的最適化を効率的に行うための新しいベイズ最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-25T17:45:26Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
本稿では,ベイズ的多目的・多忠実度最適化(MOMF)に対する新しいアプローチについて検討する。
複数目的とデータソースの同時最適化を支援するために,信頼度基準の革新的利用を提案する。
本手法はプラズマ物理学や流体力学などの分野におけるシミュレーション問題の解法に適用可能である。
論文 参考訳(メタデータ) (2021-12-27T20:55:26Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - An Empirical Study of Assumptions in Bayesian Optimisation [61.19427472792523]
本研究では,ベイズ最適化に固有の従来的および非慣習的仮定を厳密に分析する。
超パラメータチューニングタスクの大多数は、不均一性と非定常性を示すと結論付けている。
これらの発見が実践者およびこの分野のさらなる研究の指針となることを願っている。
論文 参考訳(メタデータ) (2020-12-07T16:21:12Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。