論文の概要: Bridging the Reasoning Gap: Small LLMs Can Plan with Generalised Strategies
- arxiv url: http://arxiv.org/abs/2501.18817v1
- Date: Fri, 31 Jan 2025 00:28:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:38.903649
- Title: Bridging the Reasoning Gap: Small LLMs Can Plan with Generalised Strategies
- Title(参考訳): 推論ギャップを埋める - 一般化戦略で小さなLLMを計画できる
- Authors: Andrey Borro, Patricia J Riddle, Michael W Barley, Michael J Witbrock,
- Abstract要約: 資源集約度が低いモデルの推論能力を高めるための2つの手法を提案する。
ひとつは、よりリソース集約的なモデルによって生成される、特定のドメイン内のタスクを解決するための一般的な戦略を提供することです。
もうひとつは、提案したソリューションの誤りを反復的に修正することで、コスト効率を悪用することである。
- 参考スコア(独自算出の注目度): 0.9093413254392775
- License:
- Abstract: Recent advancements in the reasoning skills of Large Language Models (LLMs) demonstrate an increase in the ability of LLMs to solve simple planning tasks. However, as long as the driving force behind improved reasoning capability is the size and complexity of the model, the financial and computational costs associated with running them will also increase. This trend raises questions about continued accessibility and whether these improvements will increase at the same pace as models continue to grow in size and expense. We propose two approaches to enhance the reasoning ability of less resource-intensive LLMs. (1) Provide them with a generalised strategy for solving tasks within a given domain, generated by a more resource-intensive LLM. (2) Exploit their cost-effectiveness by iteratively prompting these models to correct errors in their proposed solutions. Our empirical results from planning and mathematical reasoning tasks demonstrate that these methods improve the performance of less resource-intensive LLMs to levels comparable with their more resource-intensive counterparts, at a fraction of the cost. Additionally, we show that the utilisation of generalised strategies in our experiments reduced the cost of the less resource-intensive model by nearly 30 percent on average.
- Abstract(参考訳): LLM(Large Language Models)の推論能力の進歩は,LLMが簡単な計画課題を解く能力の向上を示している。
しかし、改良された推論能力の原動力がモデルのサイズと複雑さである限り、それらの実行に伴う金銭的・計算的コストも増大する。
この傾向は、アクセシビリティの継続と、モデルのサイズとコストが増加し続けるのと同じペースで、これらの改善が増加するかどうかに関する疑問を提起する。
資源集約の少ないLLMの推論能力を高めるための2つの手法を提案する。
1)より資源集約的なLCMによって生成される、与えられた領域内のタスクを解くための一般的な戦略を提供する。
2)提案手法の誤り訂正を反復的に促すことにより,コスト効率を向上する。
計画および数学的推論タスクによる実証的な結果から、これらの手法は、よりリソース集約的なLCMの性能を、よりリソース集約的なLCMに匹敵するレベルまで、コストのごく一部で向上することを示した。
さらに,本実験における一般化戦略の利用により,資源集約化の少ないモデルのコストを平均30%近く削減した。
関連論文リスト
- Universal Model Routing for Efficient LLM Inference [72.65083061619752]
我々は,これまで観測されていなかった新しいLLMがテスト時に利用可能となる動的ルーティングの問題を考察する。
本稿では,各LSMを特徴ベクトルとして表現する手法を提案する。
これらの戦略が理論的に最適なルーティングルールの推定であり、エラーを定量化するための過剰なリスクを提供する。
論文 参考訳(メタデータ) (2025-02-12T20:30:28Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Evaluating Small Language Models for News Summarization: Implications and Factors Influencing Performance [31.38160018745285]
小型言語モデル (SLM) は、大型言語モデル (LLM) の代替として、よりアクセスしやすいものを提供する。
本稿では,2000件のニュースサンプルを対象に,19件のSLMを包括的に評価した。
論文 参考訳(メタデータ) (2025-02-02T03:07:45Z) - Unveiling the Secret Recipe: A Guide For Supervised Fine-Tuning Small LLMs [22.177654792824896]
コスト効率とアクセシビリティのために,小型言語モデル(3Bから7Bパラメータ)に焦点を当てた。
オープンソースで事前トレーニングされた4つのモデルに対して,さまざまなトレーニング構成と戦略について検討する。
i) 学習率の低いバッチサイズと組み合わせることで,MMLUやMTBench,Open LLM Leaderboardといったベンチマーク上でのモデルパフォーマンスが向上します。
論文 参考訳(メタデータ) (2024-12-17T21:16:59Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
大きな言語モデル(LLM)を使用するためのコアテクニックとして,推論への関与を促す声が上がっている。
本研究は,認知科学で用いられるメタレゾニングの計算モデルに基づく新しいアプローチを導入する。
我々は不必要な推論を罰することで計算の価値を組み込む報酬関数を開発する。
論文 参考訳(メタデータ) (2024-10-07T23:48:52Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
本稿では,Large Language Models (LLMs) を用いた不確実性低減フレームワークを提案する。
LLMは、先進的な言語能力と、広範なデータサイエンスの専門知識を持たない人々に対して大きな利点をもたらす「従量制」モデルに便乗している。
我々は,本手法が効率的かつ効果的であることを示し,実世界のタスクに有望な応用を提供する。
論文 参考訳(メタデータ) (2024-01-07T09:06:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。