Programmable Synthetic Magnetism and Chiral Edge States in Nano-Optomechanical Quantum Hall Networks
- URL: http://arxiv.org/abs/2501.18882v1
- Date: Fri, 31 Jan 2025 04:32:07 GMT
- Title: Programmable Synthetic Magnetism and Chiral Edge States in Nano-Optomechanical Quantum Hall Networks
- Authors: Jesse J. Slim, Javier del Pino, Ewold Verhagen,
- Abstract summary: We experimentally demonstrate the emergence of quantum-Hall-like chiral edge states in optomechanical resonator networks.
This work unlocks new ways of controlling topological phononic phases at the nanoscale with applications in noise management and information processing.
- Score: 0.0
- License:
- Abstract: Artificial magnetic fields break time-reversal symmetry in engineered materials--also known as metamaterials, enabling robust, topological transport of neutral excitations, much like electronic conduction edge channels in the integer quantum Hall effect. We experimentally demonstrate the emergence of quantum-Hall-like chiral edge states in optomechanical resonator networks. Synthetic magnetic fields for phononic excitations are induced through laser drives, while cavity optomechanical control allows full reconfigurability of the effective metamaterial response of the networks, including programming of magnetic fluxes in multiple resonator plaquettes. By tuning the interplay between network connectivity and magnetic fields, we demonstrate both flux-sensitive and flux-insensitive localized mechanical states. Scaling up the system creates spectral features that are precursors to Hofstadter butterfly spectra. Site-resolved spectroscopy reveals edge-bulk separation, with stationary phononic distributions signaling chiral edge modes. We directly probe those edge modes in transport measurements to demonstrate a unidirectional acoustic channel. This work unlocks new ways of controlling topological phononic phases at the nanoscale with applications in noise management and information processing.
Related papers
- Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic
States [0.0]
We propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre.
We show that the optical properties of the material, such as Kerr and Faraday rotation, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies.
Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.
arXiv Detail & Related papers (2023-10-24T20:37:09Z) - Engineering Entangled Coherent States of Magnons and Phonons via a
Transmon Qubit [0.0]
We propose a scheme for generating and controlling entangled coherent states (ECS) of magnons.
The proposed hybrid circuit architecture comprises a superconducting transmon qubit coupled to a pair of magnonic Yttrium Iron Garnet (YIG) spherical resonators.
We numerically demonstrate a protocol for the preparation of magnonic and mechanical Bell states with high fidelity.
arXiv Detail & Related papers (2023-09-28T15:20:36Z) - Programmable Quantum Processors based on Spin Qubits with
Mechanically-Mediated Interactions and Transport [0.0]
We describe a method for programmable control of multi-qubit spin systems.
We show coherent manipulation and mechanical transport of a proximal spin qubit by utilizing nuclear spin memory.
With realistic improvements the high-cooperativity regime can be reached, offering a new avenue towards scalable quantum information processing with spin qubits.
arXiv Detail & Related papers (2023-07-23T00:52:19Z) - Quantum parametric amplifiation of phonon-mediated magnon-spin
interaction [12.464802118191724]
We show how to strongly couple the magnon modes in a hybrid tripartite system.
The coherent magnon-phonon coupling is engineered by introducing the quantum parametric amplifiation of the mechanical motion.
Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.
arXiv Detail & Related papers (2023-07-22T02:33:28Z) - Hybrid quantum system with strong magnetic coupling of a magnetic vortex
to a nanomechanical resonator [2.04473038220853]
We present a hybrid quantum system composed of a magnetic vortex and a nanomechanical resonator.
The gyrotropic mode of the vortex can coherently couple to the quantized mechanical motion of the resonator through magnetic interaction.
arXiv Detail & Related papers (2023-01-25T07:12:50Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.