論文の概要: VKFPos: A Learning-Based Monocular Positioning with Variational Bayesian Extended Kalman Filter Integration
- arxiv url: http://arxiv.org/abs/2501.18994v1
- Date: Fri, 31 Jan 2025 09:54:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:19.251826
- Title: VKFPos: A Learning-Based Monocular Positioning with Variational Bayesian Extended Kalman Filter Integration
- Title(参考訳): VKFPos:変分ベイズ拡張カルマンフィルタを用いた学習型単眼位置決め
- Authors: Jian-Yu Chen, Yi-Ru Chen, Yin-Qiao Chang, Che-Ming Li, Jann-Long Chern, Chih-Wei Huang,
- Abstract要約: 本稿では,拡張カルマンフィルタ(EKF)を用いて絶対ポス回帰(APR)と相対ポス回帰(RPR)を統合する新しいアプローチであるVKFPosを提案する。
本手法は, 単分子位置決め問題の本質的後続確率をAPR成分とRPR成分に分解可能であることを示す。
連続した画像がRPRとEKFの統合を可能にする時間的位置決めでは、VKFPosは時間的APRとモデルベースの統合方法より優れている。
- 参考スコア(独自算出の注目度): 16.501721700639667
- License:
- Abstract: This paper addresses the challenges in learning-based monocular positioning by proposing VKFPos, a novel approach that integrates Absolute Pose Regression (APR) and Relative Pose Regression (RPR) via an Extended Kalman Filter (EKF) within a variational Bayesian inference framework. Our method shows that the essential posterior probability of the monocular positioning problem can be decomposed into APR and RPR components. This decomposition is embedded in the deep learning model by predicting covariances in both APR and RPR branches, allowing them to account for associated uncertainties. These covariances enhance the loss functions and facilitate EKF integration. Experimental evaluations on both indoor and outdoor datasets show that the single-shot APR branch achieves accuracy on par with state-of-the-art methods. Furthermore, for temporal positioning, where consecutive images allow for RPR and EKF integration, VKFPos outperforms temporal APR and model-based integration methods, achieving superior accuracy.
- Abstract(参考訳): 本稿では,APR(Absolute Pose Regression)とRPR(Relative Pose Regression)を統合した新しいアプローチであるVKFPosをベイズ的推論フレームワーク内で拡張カルマンフィルタ(EKF)を用いて,学習に基づく単分子位置決めの課題に対処する。
本手法は, 単分子位置決め問題の本質的後続確率をAPR成分とRPR成分に分解可能であることを示す。
この分解は、APRとRPRの両方の分岐の共分散を予測し、関連する不確実性を考慮し、ディープラーニングモデルに埋め込まれる。
これらの共分散は損失関数を高め、EKF統合を促進する。
室内および屋外の両方のデータセットに対する実験的評価は、単発のAPRブランチが最先端の手法と同等の精度を達成していることを示している。
さらに、連続した画像がRPRとEKFの統合を可能にする時間的位置決めでは、VKFPosは時間的APRとモデルに基づく統合方法よりも優れ、精度が優れている。
関連論文リスト
- Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
フィールド再構成タスクにおけるスコアベース拡散モデルの開発と拡張を行う。
本研究では,観測領域と観測領域の間のトラクタブルマッピングを構築するための条件符号化手法を提案する。
本研究では, モデルが再現可能かどうかを把握し, 融合結果の精度を向上する能力を示す。
論文 参考訳(メタデータ) (2024-08-30T19:46:23Z) - HR-APR: APR-agnostic Framework with Uncertainty Estimation and Hierarchical Refinement for Camera Relocalisation [12.333674270678552]
APR(Absolute Pose Regressors)は、モノクロ画像から直接カメラのポーズを推定するが、その精度は異なるクエリに対して不安定である。
不確かさを意識したAPRは、推定されたポーズに関する不確実な情報を提供し、これらの信頼できない予測の影響を軽減する。
本研究では,クエリとデータベースの特徴間のコサイン類似度推定として不確実性推定を定式化する新しいAPR非依存フレームワークHR-APRを紹介する。
論文 参考訳(メタデータ) (2024-02-22T08:21:46Z) - Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning [0.5999777817331317]
データ同化は、気候予報や天気予報から自動運転車の軌道計画まで、様々な応用において重要な役割を果たしている。
近年の進歩は、主に教師付き学習フレームワーク内で、この領域でディープラーニングアプローチが出現している。
本研究では、強化学習(RL)を用いて状態変数の完全あるいは部分的観測を用いて状態修正を行う新しいDA戦略を提案する。
論文 参考訳(メタデータ) (2024-01-01T06:53:36Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
本稿では,推論の視点を拡張し,フェデレート学習の変分推論の定式化について述べる。
我々は、FedEPを標準フェデレーション学習ベンチマークに適用し、収束速度と精度の両方において、強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-02-08T17:58:11Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence [66.83161885378192]
ROC(AUROC)と精度リコール曲線(AUPRC)の下の領域は、不均衡問題に対する分類性能を評価するための一般的な指標である。
本稿では,深層学習のためのAUPRCの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-04-18T06:22:21Z) - Distributionally Robust Federated Averaging [19.875176871167966]
適応サンプリングを用いた堅牢な学習周期平均化のためのコミュニケーション効率の高い分散アルゴリズムを提案する。
我々は、フェデレーション学習環境における理論的結果に関する実験的証拠を裏付ける。
論文 参考訳(メタデータ) (2021-02-25T03:32:09Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。