論文の概要: Robust Local Polynomial Regression with Similarity Kernels
- arxiv url: http://arxiv.org/abs/2501.10729v1
- Date: Sat, 18 Jan 2025 11:21:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:14.347785
- Title: Robust Local Polynomial Regression with Similarity Kernels
- Title(参考訳): 類似カーネルを用いたロバスト局所ポリノミアル回帰
- Authors: Yaniv Shulman,
- Abstract要約: 局所多項式回帰(Local Polynomial Regression, LPR)は、複雑な関係をモデル化するための非パラメトリックな手法である。
データの局所化部分集合に低度重みを付け、近接して重み付けすることで回帰関数を推定する。
従来のLPRは外れ値や高平均点に敏感であり、推定精度に大きな影響を及ぼす可能性がある。
本稿では,予測変数と応答変数の両方を重み付け機構に組み込んだ新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Local Polynomial Regression (LPR) is a widely used nonparametric method for modeling complex relationships due to its flexibility and simplicity. It estimates a regression function by fitting low-degree polynomials to localized subsets of the data, weighted by proximity. However, traditional LPR is sensitive to outliers and high-leverage points, which can significantly affect estimation accuracy. This paper revisits the kernel function used to compute regression weights and proposes a novel framework that incorporates both predictor and response variables in the weighting mechanism. By introducing two positive definite kernels, the proposed method robustly estimates weights, mitigating the influence of outliers through localized density estimation. The method is implemented in Python and is publicly available at https://github.com/yaniv-shulman/rsklpr, demonstrating competitive performance in synthetic benchmark experiments. Compared to standard LPR, the proposed approach consistently improves robustness and accuracy, especially in heteroscedastic and noisy environments, without requiring multiple iterations. This advancement provides a promising extension to traditional LPR, opening new possibilities for robust regression applications.
- Abstract(参考訳): 局所多項式回帰(Local Polynomial Regression, LPR)は、その柔軟性と単純さから複雑な関係をモデル化するための広く使われている非パラメトリック手法である。
低次多項式をデータの局所化部分集合に、近接して重み付けすることで回帰関数を推定する。
しかし、従来のLPRは外れ値や高平均点に敏感であり、推定精度に大きな影響を及ぼす可能性がある。
本稿では、回帰重みの計算に使用されるカーネル関数を再検討し、重み付け機構に予測変数と応答変数の両方を組み込んだ新しいフレームワークを提案する。
提案手法は,2つの正定値カーネルを導入することにより,重みを強く推定し,局所密度推定による外乱の影響を緩和する。
このメソッドはPythonで実装されており、https://github.com/yaniv-shulman/rsklprで公開されている。
標準のLPRと比較して、提案手法は頑健さと精度を一貫して改善する。
この進歩は従来のLPRへの有望な拡張を提供し、堅牢なレグレッションアプリケーションに対する新たな可能性を開く。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
我々は高次元線形量子レグレッションのための分散推定とサポート回復に焦点をあてる。
元の量子レグレッションを最小二乗最適化に変換する。
効率的なアルゴリズムを開発し、高い計算と通信効率を享受する。
論文 参考訳(メタデータ) (2024-05-13T08:32:22Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Dual-sPLS: a family of Dual Sparse Partial Least Squares regressions for
feature selection and prediction with tunable sparsity; evaluation on
simulated and near-infrared (NIR) data [1.6099403809839032]
この論文で示された変種であるDual-sPLSは、古典的なPLS1アルゴリズムを一般化する。
正確な予測と効率的な解釈のバランスを提供する。
コードはRでオープンソースパッケージとして提供される。
論文 参考訳(メタデータ) (2023-01-17T21:50:35Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - ReCAB-VAE: Gumbel-Softmax Variational Inference Based on Analytic
Divergence [17.665255113864795]
緩和されたカテゴリー分布のクルバック・リーブラー発散(KLD)の上界に対応する新しい発散型計量について述べる。
また、連続表現と緩和表現の両方をうまくモデル化できる緩和された分類的有界変分オートエンコーダ(ReCAB-VAE)を提案する。
論文 参考訳(メタデータ) (2022-05-09T08:11:46Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
本稿では,分散量子レグレッションにおいて,厳密なスケーリング条件を伴わずに最適な推論を実現する方法の課題に対処する。
この問題は、ローカル(各データソース)とグローバルな目的関数に適用される二重平滑化アプローチによって解決される。
局所的および大域的滑らか化パラメータの微妙な組み合わせに依存するにもかかわらず、量子回帰モデルは完全にパラメトリックである。
論文 参考訳(メタデータ) (2021-10-25T17:09:59Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
既存のほとんどのアプローチは、重い尾の分布から誘導される非ガウス的確率に、外れやすいガウス的確率を置き換えるものである。
提案手法は、未知の回帰関数の雑音および偏りの観測として、外れ値をモデル化する。
バイアス推定に基づいて、ロバストなGP回帰を標準のGP回帰問題に還元することができる。
論文 参考訳(メタデータ) (2020-01-14T06:21:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。