論文の概要: Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
- arxiv url: http://arxiv.org/abs/2503.09483v2
- Date: Mon, 17 Mar 2025 10:38:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:36:42.324157
- Title: Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
- Title(参考訳): 畳み込み合成規則化のための空間適応型$\ell_1$-Norms重みの学習
- Authors: Andreas Kofler, Luca Calatroni, Christoph Kolbitsch, Kostas Papafitsoros,
- Abstract要約: 我々は、事前学習された畳み込みフィルタのファミリーを考察し、スパース特徴写像に適用された空間的に変化するパラメータを深くパラメータ化して推定する。
提案手法は,後者の手法で視覚的,定量的に比較可能な結果が得られ,同時に高い解釈が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 1.1699566743796068
- License:
- Abstract: We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
- Abstract(参考訳): 本稿では,畳み込み合成に基づく$\ell_1$正規化の枠組みにおいて,空間適応パラメータマップを学習するアルゴリズムを提案する。
より正確には、事前学習された畳み込みフィルタの一群について考察し、その基礎となるスパース推定問題を解くためにFISTAアルゴリズムをアンロールすることで、スパース特徴写像に適用された空間的変動パラメータを深くパラメータ化する。
提案手法は低磁場MRIの画像再構成のために評価され,トータル変分正規化に基づく空間適応型および非適応型解析型手法と,モデルベース深層学習手法との対比を行った。
提案手法は,後者の手法で視覚的,定量的に比較可能な結果が得られ,同時に高い解釈が可能であることが示唆された。
特に、推論されたパラメータマップは、再構成における各フィルタの局所的な寄与を定量化し、アルゴリズム機構に関する貴重な洞察を与え、不適切なフィルタを破棄するのに使用することができる。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Integral Operator Approaches for Scattered Data Fitting on Spheres [16.389581549801253]
重み付きスペクトルフィルタアルゴリズムの近似性能について検討する。
重み付きスペクトルフィルタアルゴリズムのソボレフ型誤差推定を最適に導出する。
論文 参考訳(メタデータ) (2024-01-27T04:42:50Z) - Joint State Estimation and Noise Identification Based on Variational
Optimization [8.536356569523127]
CVIAKFと呼ばれる共役計算変分推論に基づく新しい適応カルマンフィルタ法を提案する。
CVIAKFの有効性は、目標追尾のための合成および実世界のデータセットを通して検証される。
論文 参考訳(メタデータ) (2023-12-15T07:47:03Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Study of Proximal Normalized Subband Adaptive Algorithm for Acoustic
Echo Cancellation [23.889870461547105]
スパースシナリオに適した正規化サブバンド適応フィルタを提案する。
提案アルゴリズムは, 近位前方分割法とソフトスレッショルド法に基づいて導出する。
シミュレーションによって支援されるアルゴリズムの平均および平均2乗挙動を解析する。
論文 参考訳(メタデータ) (2021-08-14T22:20:09Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。