論文の概要: On the Impact of Noise in Differentially Private Text Rewriting
- arxiv url: http://arxiv.org/abs/2501.19022v1
- Date: Fri, 31 Jan 2025 10:45:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:16.445878
- Title: On the Impact of Noise in Differentially Private Text Rewriting
- Title(参考訳): 差分的私的テキスト書き換えにおけるノイズの影響について
- Authors: Stephen Meisenbacher, Maulik Chevli, Florian Matthes,
- Abstract要約: そこで本稿では,DPテキストの書き直しにおけるノイズの影響を探索するために,新たな文埋込民営化手法を提案する。
実用性保護において非DP民営化技術が優れていることを実証的に示すとともに,実証的プライバシ保護においてDP手法を上回りつつも,許容可能な実証的プライバシユーティリティトレードオフを見出すことができることを示す。
- 参考スコア(独自算出の注目度): 3.0177210416625124
- License:
- Abstract: The field of text privatization often leverages the notion of $\textit{Differential Privacy}$ (DP) to provide formal guarantees in the rewriting or obfuscation of sensitive textual data. A common and nearly ubiquitous form of DP application necessitates the addition of calibrated noise to vector representations of text, either at the data- or model-level, which is governed by the privacy parameter $\varepsilon$. However, noise addition almost undoubtedly leads to considerable utility loss, thereby highlighting one major drawback of DP in NLP. In this work, we introduce a new sentence infilling privatization technique, and we use this method to explore the effect of noise in DP text rewriting. We empirically demonstrate that non-DP privatization techniques excel in utility preservation and can find an acceptable empirical privacy-utility trade-off, yet cannot outperform DP methods in empirical privacy protections. Our results highlight the significant impact of noise in current DP rewriting mechanisms, leading to a discussion of the merits and challenges of DP in NLP, as well as the opportunities that non-DP methods present.
- Abstract(参考訳): テキストの民営化の分野は、しばしば$\textit{Differential Privacy}$ (DP)という概念を利用して、機密データの再書き込みや難読化の正式な保証を提供する。
DPアプリケーションの一般的でユビキタスな形式は、データまたはモデルレベルで、テキストのベクトル表現に校正されたノイズを追加する必要がある。
しかし、ノイズの追加は、ほぼ間違いなくかなりの実用的損失をもたらし、NLPにおけるDPの大きな欠点を浮き彫りにする。
そこで本研究では,DPテキストの書き直しにおけるノイズの影響を探索するために,民営化手法を新たに導入する。
筆者らは,非DP民営化技術は実用性に優れ,実証的プライバシ・ユーティリティ・トレードオフが許容できるが,実証的プライバシ保護においてDP手法よりも優れていることを実証的に実証した。
本研究は,NLPにおけるDPのメリットと課題,および非DP手法がもたらす可能性について考察した。
関連論文リスト
- Private Language Models via Truncated Laplacian Mechanism [18.77713904999236]
本稿では,高次元トラカート型ラプラシアン機構と呼ばれる新しいプライベート埋め込み手法を提案する。
提案手法は,従来のプライベート単語埋め込み法に比べて分散度が低いことを示す。
注目すべきは、高いプライバシー体制であっても、私たちのアプローチは、プライベートでないシナリオに比べて、実用性がわずかに低下することです。
論文 参考訳(メタデータ) (2024-10-10T15:25:02Z) - Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting [3.3916160303055567]
我々は、差別化プライバシ(DP)統合が課す制約について議論するとともに、そのような制限がもたらす課題を明らかにします。
以上の結果から,NLPにおけるDPのユーザビリティと非DPアプローチに対するメリットについて,さらなる議論の必要性が示唆された。
論文 参考訳(メタデータ) (2024-10-01T14:46:15Z) - Just Rewrite It Again: A Post-Processing Method for Enhanced Semantic Similarity and Privacy Preservation of Differentially Private Rewritten Text [3.3916160303055567]
本稿では,書き直したテキストを元のテキストと整合させることを目標とした,簡単な後処理手法を提案する。
以上の結果から,このような手法は,従来の入力よりも意味論的に類似した出力を生成するだけでなく,経験的プライバシ評価において平均的なスコアがよいテキストを生成することが示唆された。
論文 参考訳(メタデータ) (2024-05-30T08:41:33Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
非プライベートなデータ依存前処理アルゴリズムによって生じる追加のプライバシーコストを評価するための一般的なフレームワークを提案する。
当社のフレームワークは,2つの新しい技術的概念を活用することにより,全体的なプライバシー保証の上限を確立する。
論文 参考訳(メタデータ) (2024-03-19T17:54:49Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - DP-BART for Privatized Text Rewriting under Local Differential Privacy [2.45626162429986]
本稿では,既存の LDP システムに大きく勝る新システム "DP-BART" を提案する。
提案手法では,新たなクリッピング手法,反復的プルーニング,およびDP保証に必要なノイズを劇的に低減する内部表現の訓練を用いる。
論文 参考訳(メタデータ) (2023-02-15T13:07:34Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Differentially Private Representation for NLP: Formal Guarantee and An
Empirical Study on Privacy and Fairness [38.90014773292902]
深層モデルで学習した隠れ表現が、入力のプライベート情報を符号化できることが示されている。
テキストから抽出した表現のプライバシを保護するために,DPNR(differially Private Neural Representation)を提案する。
論文 参考訳(メタデータ) (2020-10-03T05:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。