RMDM: Radio Map Diffusion Model with Physics Informed
- URL: http://arxiv.org/abs/2501.19160v2
- Date: Wed, 19 Mar 2025 17:06:01 GMT
- Title: RMDM: Radio Map Diffusion Model with Physics Informed
- Authors: Haozhe Jia, Wenshuo Chen, Zhihui Huang, Hongru Xiao, Nanqian Jia, Keming Wu, Songning Lai, Yutao Yue,
- Abstract summary: Radio map reconstruction is essential for enabling advanced applications.<n> challenges such as complex signal propagation and sparse data hinder accurate reconstruction.<n>We propose the **Radio Map Diffusion Model (RMDM)**, a physics-informed framework that incorporates constraints like the **Helmholtz equation**.
- Score: 1.1796025053683545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of wireless communication technology, the efficient utilization of spectrum resources, optimization of communication quality, and intelligent communication have become critical. Radio map reconstruction is essential for enabling advanced applications, yet challenges such as complex signal propagation and sparse data hinder accurate reconstruction. To address these issues, we propose the **Radio Map Diffusion Model (RMDM)**, a physics-informed framework that integrates **Physics-Informed Neural Networks (PINNs)** to incorporate constraints like the **Helmholtz equation**. RMDM employs a dual U-Net architecture: the first ensures physical consistency by minimizing PDE residuals, boundary conditions, and source constraints, while the second refines predictions via diffusion-based denoising. By leveraging physical laws, RMDM significantly enhances accuracy, robustness, and generalization. Experiments demonstrate that RMDM outperforms state-of-the-art methods, achieving **NMSE of 0.0031** and **RMSE of 0.0125** under the Static RM (SRM) setting, and **NMSE of 0.0047** and **RMSE of 0.0146** under the Dynamic RM (DRM) setting. These results establish a novel paradigm for integrating physics-informed and data-driven approaches in radio map reconstruction, particularly under sparse data conditions.
Related papers
- RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction [69.96295462931168]
We propose a physics-informed generative learning approach, termed RadioDiff-$bmk2$, for accurate and efficient multipath-aware radio map (RM) construction.
We establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation.
arXiv Detail & Related papers (2025-04-22T06:28:13Z) - RadioDiff-Inverse: Diffusion Enhanced Bayesian Inverse Estimation for ISAC Radio Map Construction [11.385703484113552]
Radio maps (RMs) are essential for environment-aware communication and sensing, providing location-specific wireless channel information.
Existing RM construction methods often rely on precise environmental data and base station (BS) locations, which are not always available in dynamic or privacy-sensitive environments.
This paper formulates RM construction as a Bayesian inverse problem under coarse environmental knowledge and noisy sparse measurements.
We propose RadioDiff-Inverse, a diffusion-enhanced Bayesian inverse estimation framework that uses an unconditional generative diffusion model to learn the RM prior.
arXiv Detail & Related papers (2025-04-19T13:49:59Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.
multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.
Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications [5.135587709363216]
This paper introduces the minimum error entropy criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications.
The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization.
arXiv Detail & Related papers (2024-09-25T12:45:47Z) - RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction [42.596399621642234]
Radio map (RM) is a promising technology that can obtain pathloss based on only location.
In this paper, a sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction.
Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio.
arXiv Detail & Related papers (2024-08-16T08:02:00Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications [12.218161437914118]
conditional denoising diffusion probabilistic models (DDPMs) are proposed to enhance the data transmission and reconstruction over wireless channels.
Inspired by this, the key idea is to leverage the generative prior of diffusion models in learning a "noisy-to-clean" transformation of the information signal.
The proposed scheme could be beneficial for communication scenarios in which a prior knowledge of the information content is available.
arXiv Detail & Related papers (2023-10-30T11:33:01Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.