論文の概要: Hourly Short Term Load Forecasting for Residential Buildings and Energy Communities
- arxiv url: http://arxiv.org/abs/2501.19234v1
- Date: Fri, 31 Jan 2025 15:49:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:08.094467
- Title: Hourly Short Term Load Forecasting for Residential Buildings and Energy Communities
- Title(参考訳): 住宅の短期負荷予測とエネルギーコミュニティ
- Authors: Aleksei Kychkin, Georgios C. Chasparis,
- Abstract要約: 永続モデル、自動回帰ベースの機械学習モデル、より高度なディープラーニングモデルを導入します。
既存の手法に比べて,新たに導入された時間ベースの予測モデルの予測精度が15~30%向上するのを観察する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Electricity load consumption may be extremely complex in terms of profile patterns, as it depends on a wide range of human factors, and it is often correlated with several exogenous factors, such as the availability of renewable energy and the weather conditions. The first goal of this paper is to investigate the performance of a large selection of different types of forecasting models in predicting the electricity load consumption within the short time horizon of a day or few hours ahead. Such forecasts may be rather useful for the energy management of individual residential buildings or small energy communities. In particular, we introduce persistence models, standard auto-regressive-based machine learning models, and more advanced deep learning models. The second goal of this paper is to introduce two alternative modeling approaches that are simpler in structure while they take into account domain specific knowledge, as compared to the previously mentioned black-box modeling techniques. In particular, we consider the persistence-based auto-regressive model (PAR) and the seasonal persistence-based regressive model (SPR), priorly introduced by the authors. In this paper, we specifically tailor these models to accommodate the generation of hourly forecasts. The introduced models and the induced comparative analysis extend prior work of the authors which was restricted to day-ahead forecasts. We observed a 15-30% increase in the prediction accuracy of the newly introduced hourly-based forecasting models over existing approaches.
- Abstract(参考訳): 電力消費は、広範囲の人的要因に依存するため、プロファイルパターンの観点では非常に複雑であり、再生可能エネルギーの可用性や気象条件など、いくつかの外因性要因と相関することが多い。
本研究の目的は,1日または数時間前の短時間の地平線内での電力負荷量の予測において,様々な種類の予測モデルの有効性を検討することである。
このような予測は、個々の住宅や小さなエネルギーコミュニティのエネルギー管理に役立つかもしれない。
特に、永続モデル、標準の自動回帰ベースの機械学習モデル、より高度なディープラーニングモデルを導入します。
2つ目の目標は、前述のブラックボックスモデリング技術と比較して、ドメイン固有の知識を考慮しながら、構造がよりシンプルになる2つの代替モデリング手法を導入することである。
特に,持続性に基づく自己回帰モデル (PAR) と季節性に基づく回帰モデル (SPR) について検討する。
本稿では,時間的予測の生成に対応するため,これらのモデルを特別に調整する。
導入されたモデルと推論された比較分析は、日頭予測に制限された著者の以前の作業を拡張した。
既存手法に比べて,新たに導入された時間ベース予測モデルの予測精度が15~30%向上した。
関連論文リスト
- PowerMamba: A Deep State Space Model and Comprehensive Benchmark for Time Series Prediction in Electric Power Systems [6.516425351601512]
予測結果と実際のグリッド結果のギャップを埋めるために時系列予測モデルが必要である。
従来の状態空間モデルと深層学習を組み合わせた多変量時系列予測モデルを提案する。
5年間の負荷、電力価格、アシラリーサービス価格、再生可能エネルギー生成にまたがるデータセットをリリースする。
論文 参考訳(メタデータ) (2024-12-09T00:23:34Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
本稿では,解釈可能なP-スプラインから構築され,自己回帰後処理によって強化された一般化付加モデル(GAM)を用いた新しい予測手法を提案する。
提案手法は欧州24カ国の負荷データに基づいて評価される。
論文 参考訳(メタデータ) (2024-05-27T11:41:41Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
本稿では,人工知能を用いた短期負荷予測手法を提案する。
その結果、(負荷予測タスクに適応した)持続的項と回帰的項の組み合わせは、最高の予測精度が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-21T12:23:09Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
短期負荷予測(STLF)は電力グリッドとエネルギー市場の効果的かつ経済的な運用に不可欠である。
STLFの文献ではいくつかのディープラーニングモデルが提案されており、有望な結果を報告している。
論文 参考訳(メタデータ) (2023-02-23T17:11:04Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。