論文の概要: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2501.19342v1
- Date: Fri, 31 Jan 2025 17:43:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:05.236392
- Title: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- Title(参考訳): ベイズ最適化を用いた小さな解集合による複数対象の被覆
- Authors: Natalie Maus, Kyurae Kim, Yimeng Zeng, Haydn Thomas Jones, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Jacob R. Gardner,
- Abstract要約: 多目的ブラックボックス最適化では、Tブラックボックス対象関数のセットを同時に最適化するソリューションを見つけることが目的である。
我々は、このパラダイムから外れた新しい問題設定を導入し、K T が集合的に T の目的を「覆い隠す」ような、より小さな K の解の集合を見つける。
この問題のモチベーションの例として、薬物設計が挙げられる。例えば、私たちはT病原体を持ち、少なくとも1つの抗生物質を各病原体の治療に使用できるように、KT抗生物質のセットを同定することを目指している。
- 参考スコア(独自算出の注目度): 7.504371299651926
- License:
- Abstract: In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of T black-box objective functions, $f_1$, ..., $f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In this work, we introduce a novel problem setting that departs from this paradigm: finding a smaller set of K solutions, where K < T, that collectively "covers" the T objectives. A set of solutions is defined as "covering" if, for each objective $f_1$, ..., $f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have T pathogens and aim to identify a set of K < T antibiotics such that at least one antibiotic can be used to treat each pathogen. To address this problem, we propose Multi-Objective Coverage Bayesian Optimization (MOCOBO), a principled algorithm designed to efficiently find a covering set. We validate our approach through extensive experiments on challenging high-dimensional tasks, including applications in peptide and molecular design. Experiments demonstrate MOCOBO's ability to find high-performing covering sets of solutions. Additionally, we show that the small sets of K < T solutions found by MOCOBO can match or nearly match the performance of T individually optimized solutions for the same objectives. Our results highlight MOCOBO's potential to tackle complex multi-objective problems in domains where finding at least one high-performing solution for each objective is critical.
- Abstract(参考訳): マルチオブジェクトのブラックボックス最適化では、典型的には、Tブラックボックスの目的関数の集合を最適化するソリューションを見つけること、$f_1$, ..., $f_T$ を同時に見つけることが目的である。
伝統的なアプローチは、すべての目的の間でトレードオフのバランスをとる単一のパレート最適セットを求めることが多い。
そこで本研究では,このパラダイムから外れた,K < T という,T の目的を包括的に "カバー" する,より小さな K の解の集合を見つけるという,新たな問題設定を導入する。
解の集合が "covering" であると定義されるのは、各目的の $f_1$, ..., $f_T$ に対して、少なくとも1つの良い解が存在するときである。
この問題のモチベーションの例としては、薬物設計が挙げられる。
例えば、我々はT病原体を持ち、各病原体を治療するために少なくとも1つの抗生物質を使用できるように、K<T型抗生物質のセットを同定することを目指している。
この問題を解決するために,多目的被覆ベイズ最適化(MOCOBO)を提案する。
我々は、ペプチドや分子設計など、高次元課題への挑戦に関する広範な実験を通じて、我々のアプローチを検証する。
実験では、MOCOBOがハイパフォーマンスな覆いの集合を見つける能力を示す。
さらに、MOCOBOによって発見されたK < T 解の小さな集合は、同じ目的に対して個別に最適化された T 解のパフォーマンスに一致するか、ほぼ一致するかを示す。
以上の結果から,MOCOBOが各目的に対して少なくとも1つのハイパフォーマンスな解を求める領域において,複雑な多目的問題に対処する可能性が示唆された。
関連論文リスト
- Non-Myopic Multi-Objective Bayesian Optimization [64.31753000439514]
多目的最適化問題を解くために、有限水平逐次実験設計の問題を考察する。
この問題は、材料設計を含む多くの現実世界の応用で発生する。
我々はMOO問題に対する最初の非ミオピック手法を提案する。
論文 参考訳(メタデータ) (2024-12-11T04:05:29Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
既存の手法は主に、1つの報酬関数に対してLMを最適化することに集中し、それらの適応性は様々な目的に制限される。
本稿では,予測の線形結合から次のトークンを出力する復号時間アルゴリズムである$textbfmulti-objective decoding (MOD)$を提案する。
提案手法は, 自然条件下であっても, 既存のアプローチが準最適であることを示すとともに, 提案手法の最適性を保証する。
論文 参考訳(メタデータ) (2024-06-27T02:46:30Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
多目的最適化は、競合する目的を1つのソリューションで最適化できない現実の多くのアプリケーションで見られる。
本稿では,多数の目的をカバーできるいくつかの代表解を見つけるために,新しいTchebycheff集合スカラー化法を提案する。
このようにして、それぞれの目的は、小さな解集合の少なくとも1つの解によってうまく対応できる。
論文 参考訳(メタデータ) (2024-05-30T03:04:57Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Many-Objective Multi-Solution Transport [36.07360460509921]
many-objective multi-solution Transport (MosT) は、Paretoの多くの目的に対して複数の多様なソリューションを見つけるためのフレームワークである。
MosTはこの問題を各解に対する重み付けされた目的の2段階の最適化として定式化し、そこでは重み付けは目的と解の間の最適な輸送によって定義される。
論文 参考訳(メタデータ) (2024-03-06T23:03:12Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
信頼領域を用いたランク順ベイズ最適化(ROBOT)を提案する。
ROBOTは、ユーザが特定した多様性基準に従って、多様なハイパフォーマンスソリューションのポートフォリオを見つけることを目的としている。
そこで本研究では,機能評価をほとんど必要とせず,高い性能の多様な解を多数発見できることを示す。
論文 参考訳(メタデータ) (2022-10-20T01:56:38Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-07T10:48:28Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。