論文の概要: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2501.19342v4
- Date: Mon, 27 Oct 2025 15:59:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 19:54:32.248054
- Title: Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
- Title(参考訳): ベイズ最適化を用いた小さな解集合による複数対象の被覆
- Authors: Natalie Maus, Kyurae Kim, Yimeng Zeng, Haydn Thomas Jones, Fangping Wan, Marcelo Der Torossian Torres, Cesar de la Fuente-Nunez, Jacob R. Gardner,
- Abstract要約: この問題のモチベーションの例としては、薬物設計が挙げられる。
我々は、カバレッジ最適化のためのBOアルゴリズムであるMOCOBO(Multi-Objective Coverage Bayesian Optimization)を開発した。
その結果,MOCOBOが発見する$K T$ソリューションのカバレッジは,各目的を個別に最適化して得られる$T$ソリューションのカバレッジとほぼ一致していることがわかった。
- 参考スコア(独自算出の注目度): 17.404466627550143
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In multi-objective black-box optimization, the goal is typically to find solutions that optimize a set of $T$ black-box objective functions, $f_1, \ldots f_T$, simultaneously. Traditional approaches often seek a single Pareto-optimal set that balances trade-offs among all objectives. In contrast, we consider a problem setting that departs from this paradigm: finding a small set of $K < T$ solutions, that collectively "cover" the $T$ objectives. A set of solutions is defined as "covering" if, for each objective $f_1, \ldots f_T$, there is at least one good solution. A motivating example for this problem setting occurs in drug design. For example, we may have $T$ pathogens and aim to identify a set of $K < T$ antibiotics such that at least one antibiotic can be used to treat each pathogen. This problem, known as coverage optimization, has yet to be tackled with the Bayesian optimization (BO) framework. To fill this void, we develop Multi-Objective Coverage Bayesian Optimization (MOCOBO), a BO algorithm for solving coverage optimization. Our approach is based on a new acquisition function reminiscent of expected improvement in the vanilla BO setup. We demonstrate the performance of our method on high-dimensional black-box optimization tasks, including applications in peptide and molecular design. Results show that the coverage of the $K < T$ solutions found by MOCOBO matches or nearly matches the coverage of $T$ solutions obtained by optimizing each objective individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO exhibited high potency against drug-resistant pathogens, further demonstrating the potential of MOCOBO for drug discovery. All of our code is publicly available at the following link: https://github.com/nataliemaus/mocobo.
- Abstract(参考訳): マルチオブジェクトのブラックボックス最適化において、ゴールは、通常、$T$ブラックボックスの目的関数のセットを同時に$f_1, \ldots f_T$の集合を最適化するソリューションを見つけることである。
伝統的なアプローチは、すべての目的の間でトレードオフのバランスをとる単一のパレート最適セットを求めることが多い。
対照的に、このパラダイムから外れた問題設定として、$K < T$ の小さな集合を見つけることを考える。
解の集合が "covering" であると定義されるのは、各目的の $f_1, \ldots f_T$ に対して、少なくとも1つの良い解が存在するときである。
この問題のモチベーションの例としては、薬物設計が挙げられる。
例えば、$T$の病原体を持ち、少なくとも1つの抗生物質を各病原体の治療に使用できるように、$K < T$の抗生物質のセットを同定することを目指している。
この問題はカバレッジ最適化として知られているが、ベイズ最適化(BO)フレームワークにはまだ対応していない。
この空白を埋めるために,多目的被覆ベイズ最適化 (MOCOBO) を開発した。
提案手法は,バニラBO設定の改善が期待されていることを思い出した新たな取得機能に基づく。
ペプチドおよび分子設計への応用を含む高次元ブラックボックス最適化タスクにおいて,本手法の有効性を実証する。
その結果,MOCOBOが検出した$K < T$解のカバレッジは,各目的を個別に最適化して得られる$T$解のカバレッジとほぼ一致していることがわかった。
さらにin vitro実験では、MOCOBOが検出したペプチドは薬剤耐性病原体に対して高い有効性を示し、薬物発見のためのMOCOBOの可能性を示した。
私たちのコードは、以下のリンクで公開されています。
関連論文リスト
- Non-Myopic Multi-Objective Bayesian Optimization [64.31753000439514]
多目的最適化問題を解くために、有限水平逐次実験設計の問題を考察する。
この問題は、材料設計を含む多くの現実世界の応用で発生する。
我々はMOO問題に対する最初の非ミオピック手法を提案する。
論文 参考訳(メタデータ) (2024-12-11T04:05:29Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
既存の手法は主に、1つの報酬関数に対してLMを最適化することに集中し、それらの適応性は様々な目的に制限される。
本稿では,予測の線形結合から次のトークンを出力する復号時間アルゴリズムである$textbfmulti-objective decoding (MOD)$を提案する。
提案手法は, 自然条件下であっても, 既存のアプローチが準最適であることを示すとともに, 提案手法の最適性を保証する。
論文 参考訳(メタデータ) (2024-06-27T02:46:30Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
多目的最適化は、競合する目的を1つのソリューションで最適化できない現実の多くのアプリケーションで見られる。
本稿では,多数の目的をカバーできるいくつかの代表解を見つけるために,新しいTchebycheff集合スカラー化法を提案する。
このようにして、それぞれの目的は、小さな解集合の少なくとも1つの解によってうまく対応できる。
論文 参考訳(メタデータ) (2024-05-30T03:04:57Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Many-Objective Multi-Solution Transport [36.07360460509921]
many-objective multi-solution Transport (MosT) は、Paretoの多くの目的に対して複数の多様なソリューションを見つけるためのフレームワークである。
MosTはこの問題を各解に対する重み付けされた目的の2段階の最適化として定式化し、そこでは重み付けは目的と解の間の最適な輸送によって定義される。
論文 参考訳(メタデータ) (2024-03-06T23:03:12Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
本稿では,非支配解と結合累積分布関数の極端量子化との自然な関係を示す。
このリンクにより、我々はPareto対応CDFインジケータと関連する取得関数BOtiedを提案する。
種々の合成および実世界の問題に対する実験により,BOtied は最先端MOBO 取得関数より優れていることが示された。
論文 参考訳(メタデータ) (2023-06-01T04:50:06Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
信頼領域を用いたランク順ベイズ最適化(ROBOT)を提案する。
ROBOTは、ユーザが特定した多様性基準に従って、多様なハイパフォーマンスソリューションのポートフォリオを見つけることを目的としている。
そこで本研究では,機能評価をほとんど必要とせず,高い性能の多様な解を多数発見できることを示す。
論文 参考訳(メタデータ) (2022-10-20T01:56:38Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
膨大な多目的最適化問題は、多くの現実世界のアプリケーションで見られる。
本稿では,MOBOのパレート集合全体を近似する学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T09:41:54Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
メタ強化学習を用いて自己回帰生成モデルを訓練し、選択のための有望なシーケンスを提案する。
我々は,データのサブセットのサンプリングによって誘導されるMDPの分布に対する最適ポリシーを求める問題として,この問題を提起する。
このようなアンサンブルに対するメタラーニングは,報酬の過小評価に対して頑健であり,競争的な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-13T18:37:27Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-07T10:48:28Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。