論文の概要: The Solo Revolution: A Theory of AI-Enabled Individual Entrepreneurship
- arxiv url: http://arxiv.org/abs/2502.00009v1
- Date: Tue, 07 Jan 2025 01:34:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 06:16:00.026351
- Title: The Solo Revolution: A Theory of AI-Enabled Individual Entrepreneurship
- Title(参考訳): Solo Revolution: AIによる個人起業家育成の理論
- Authors: Venkat Ram Reddy Ganuthula,
- Abstract要約: 本稿では,人工知能技術が個人の起業能力をいかに変えるかを説明する理論的枠組みを提案する。
このフレームワークは、AI能力が進歩し続けるにつれて、起業家精神理論、組織設計、市場構造に重大な影響を与えることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the AI Enabled Individual Entrepreneurship Theory (AIET), a theoretical framework explaining how artificial intelligence technologies transform individual entrepreneurial capability. The theory identifies two foundational premises: knowledge democratization and resource requirements evolution. Through three core mechanisms skill augmentation, capital structure transformation, and risk profile modification AIET explains how individuals can now undertake entrepreneurial activities at scales previously requiring significant organizational infrastructure. The theory presents five testable propositions addressing the changing relationship between organizational size and competitive advantage, the expansion of individual entrepreneurial capacity, the transformation of market entry barriers, the evolution of traditional firm advantages, and the modification of entrepreneurial risk profiles. Boundary conditions related to task characteristics and market conditions define the theory's scope and applicability. The framework suggests significant implications for entrepreneurship theory, organizational design, and market structure as AI capabilities continue to advance. This theory provides a foundation for understanding the evolving landscape of entrepreneurship in an AI-enabled world.
- Abstract(参考訳): 本稿では,AIET(AI Enabled Individual Entrepreneurship Theory)について述べる。
この理論は知識の民主化と資源要求の進化という2つの基礎的な前提を定めている。
スキル強化、資本構造転換、リスクプロファイル修正の3つの中核的なメカニズムを通じて、AIETは、個人がこれまで重要な組織インフラを必要としていた大規模な起業家活動を実行する方法を説明する。
この理論は、組織規模と競争上の優位性の間の関係の変化、個々の起業家能力の拡大、市場参入障壁の変容、伝統的な強みの進化、起業家的リスクプロファイルの修正に対処する実証可能な5つの命題を提示している。
タスク特性と市場条件に関する境界条件は、理論の範囲と適用性を定義する。
このフレームワークは、AI能力が進歩し続けるにつれて、起業家精神理論、組織設計、市場構造に重大な影響を与えることを示唆している。
この理論は、AI対応の世界における起業家精神の進化の展望を理解する基盤となる。
関連論文リスト
- Beyond the Sum: Unlocking AI Agents Potential Through Market Forces [0.0]
AIエージェントは、デジタルマーケット内で独立した経済アクターとして機能する理論的能力を持っている。
既存のデジタルインフラストラクチャは、彼らの参加に大きな障壁をもたらします。
これらのインフラの課題に対処することは、新しい形態の経済組織を実現するための基本的なステップである、と我々は主張する。
論文 参考訳(メタデータ) (2024-12-19T09:40:40Z) - Augmenting Minds or Automating Skills: The Differential Role of Human Capital in Generative AI's Impact on Creative Tasks [4.39919134458872]
ジェネレーティブAIは、創造的な仕事を急速に作り直し、その受益者や社会的意味について批判的な疑問を提起している。
この研究は、創造的タスクにおいて、生成的AIが様々な形態の人的資本とどのように相互作用するかを探求することによって、一般的な仮定に挑戦する。
AIはクリエイティブツールへのアクセスを民主化するが、同時に認知的不平等を増幅する。
論文 参考訳(メタデータ) (2024-12-05T08:27:14Z) - Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
この種の形式化は、対話的な説明を開発するためのフレームワークと方法論を提供する、と我々は主張する。
まず,人間と機械の間で共有される説明情報を表現するために,論理に基づく新しい形式を定義した。
次に、対話型XAIの現実シナリオについて検討し、新しい知識と既存の知識の優先順位が異なり、フォーマリズムがインスタンス化される可能性がある。
論文 参考訳(メタデータ) (2024-08-13T13:11:56Z) - AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
本稿では、畳み込みニューラルネットワーク(CNN)のような階層型アーキテクチャを用いて、オーバーコンプリート不変量を構築する方法を示す。
オーバーコンプリート性により、そのタスクはニューラルアーキテクチャサーチ(NAS)のような方法で適応的に形成される。
大規模で頑健で解釈可能な視覚タスクの場合、階層的不変表現は伝統的なCNNや不変量に対する効果的な代替物とみなすことができる。
論文 参考訳(メタデータ) (2024-02-23T16:50:07Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
これらのモデルの基礎モデルは、批判的に中心的だが不完全な性格を根底から立証するものです。
本報告では,基礎モデルの可能性とリスクについて概説する。
これらの疑問に対処するためには、基礎モデルに関する重要な研究の多くは、深い学際的なコラボレーションが必要であると信じている。
論文 参考訳(メタデータ) (2021-08-16T17:50:08Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
機械学習に基づく経済シミュレーションは強力な政策・メカニズム設計の枠組みであることを示す。
AIエコノミスト(AI Economist)は、エージェントと共同適応するソーシャルプランナーの両方を訓練する2段階のディープRLフレームワークである。
単純な一段階の経済では、AIエコノミストは経済理論の最適税制を回復する。
論文 参考訳(メタデータ) (2021-08-05T17:42:35Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
我々は、シーケンシャルな意思決定問題を解決するために、単純で専門的で自己関心のあるエージェントの社会を指示する枠組みを確立する。
我々は分散強化学習アルゴリズムのクラスを導出する。
我々は、より効率的な移動学習のための社会固有のモジュラー構造の潜在的な利点を実証する。
論文 参考訳(メタデータ) (2020-07-05T16:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。