Blood Glucose Level Prediction in Type 1 Diabetes Using Machine Learning
- URL: http://arxiv.org/abs/2502.00065v1
- Date: Thu, 30 Jan 2025 21:00:38 GMT
- Title: Blood Glucose Level Prediction in Type 1 Diabetes Using Machine Learning
- Authors: Soon Jynn Chu, Nalaka Amarasiri, Sandesh Giri, Priyata Kafle,
- Abstract summary: People with Type 1 Diabetes need synthetic insulin every day.
In diabetes management, continuous glucose monitoring is an important feature that provides near real-time blood glucose data.
In this research work, we used machine learning tools, deep neural networks, deep reinforcement learning, and voting and stacking regressors to predict blood glucose levels.
- Score: 0.0
- License:
- Abstract: Type 1 Diabetes is a chronic autoimmune condition in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in little to no insulin production. Insulin helps glucose in your blood enter your muscle, fat, and liver cells so they can use it for energy or store it for later use. If insulin is insufficient, it causes sugar to build up in the blood and leads to serious health problems. People with Type 1 Diabetes need synthetic insulin every day. In diabetes management, continuous glucose monitoring is an important feature that provides near real-time blood glucose data. It is useful in deciding the synthetic insulin dose. In this research work, we used machine learning tools, deep neural networks, deep reinforcement learning, and voting and stacking regressors to predict blood glucose levels at 30-min time intervals using the latest DiaTrend dataset. Predicting blood glucose levels is useful in better diabetes management systems. The trained models were compared using several evaluation metrics. Our evaluation results demonstrate the performance of various models across different glycemic conditions for blood glucose prediction. The source codes of this work can be found in: https://github.com/soon-jynn-chu/t1d_bg_prediction
Related papers
- Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
arXiv Detail & Related papers (2024-10-04T12:52:49Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.
GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.
In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting [48.47935559597376]
Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels.
Most current DR grading methods suffer from insufficient robustness to data variability.
We propose a novel DR grading framework CLIP-DR based on three observations.
arXiv Detail & Related papers (2024-07-04T17:14:18Z) - Petri nets in modelling glucose regulating processes in the liver [0.0]
We present a Petri net model of glycolysis and glucose synthesis in the liver.
Our analysis shows that the model captures the interactions between different enzymes and substances.
The model constitutes the first element of our long-time goal to create the whole body model of the glucose regulation in a healthy human and a person with diabetes.
arXiv Detail & Related papers (2024-05-17T13:15:01Z) - Optimizing the Design of an Artificial Pancreas to Improve Diabetes
Management [10.60691612679966]
Diabetes affects 38 million people in the US alone.
The goal of the treatment is to keep blood glucose at the center of an acceptable range, as measured through a continuous glucose meter.
A secondary goal is to minimize injections, which are unpleasant and difficult for some patients to implement.
In this study, neuroevolution was used to discover an optimal strategy for the treatment.
arXiv Detail & Related papers (2024-02-10T00:49:46Z) - Learning Absorption Rates in Glucose-Insulin Dynamics from Meal
Covariates [28.39179475412449]
A meal's macronutritional content has nuanced effects on the absorption profile, which is difficult to model mechanistically.
We use a neural network to predict an individual's glucose absorption rate.
arXiv Detail & Related papers (2023-04-27T16:03:41Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
We describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated.
We have tested our proposed method using real data from 4 different diabetes patients with promising results.
arXiv Detail & Related papers (2023-03-30T09:08:31Z) - Temporal patterns in insulin needs for Type 1 diabetes [0.0]
Type 1 Diabetes (T1D) is a chronic condition where the body produces little or no insulin.
Finding the right insulin dose and time remains a complex, challenging and as yet unsolved control task.
In this study, we use the OpenAPS Data Commons dataset to discover temporal patterns in insulin need driven by well-known factors.
arXiv Detail & Related papers (2022-11-14T14:19:50Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
Diabetes is a chronic disease that has a long latent period that complicates detection of the disease at an early stage.
We propose to use machine learning to detect the subtle change in the temporal pattern of glucose concentration.
Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85%$.
arXiv Detail & Related papers (2020-05-18T13:31:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.