Including frameworks of public health ethics in computational modelling of infectious disease interventions
- URL: http://arxiv.org/abs/2502.00071v1
- Date: Fri, 31 Jan 2025 04:22:25 GMT
- Title: Including frameworks of public health ethics in computational modelling of infectious disease interventions
- Authors: Alexander E. Zarebski, Nefel Tellioglu, Jessica E. Stockdale, Julie A. Spencer, Wasiur R. KhudaBukhsh, Joel C. Miller, Cameron Zachreson,
- Abstract summary: Many values recognised as important for ethical decision-making are missing from computational models.
We demonstrate a proof-of-concept approach to incorporate multiple public health values into the evaluation of a simple computational model for vaccination against a pathogen such as SARS-CoV-2.
- Score: 36.437757915645385
- License:
- Abstract: Decisions on public health interventions to control infectious disease are often informed by computational models. Interpreting the predicted outcomes of a public health decision requires not only high-quality modelling, but also an ethical framework for assessing the benefits and harms associated with different options. The design and specification of ethical frameworks matured independently of computational modelling, so many values recognised as important for ethical decision-making are missing from computational models. We demonstrate a proof-of-concept approach to incorporate multiple public health values into the evaluation of a simple computational model for vaccination against a pathogen such as SARS-CoV-2. By examining a bounded space of alternative prioritisations of values (outcome equity and aggregate benefit) we identify value trade-offs, where the outcomes of optimal strategies differ depending on the ethical framework. This work demonstrates an approach to incorporating diverse values into decision criteria used to evaluate outcomes of models of infectious disease interventions.
Related papers
- Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
Predictive machine learning (ML) models are computational innovations that can enhance medical decision-making.
However, societal biases can be encoded into such models, raising concerns about inadvertently affecting health outcomes for disadvantaged groups.
This issue is particularly pressing in the context of substance use disorder (SUD) treatment, where biases in predictive models could significantly impact the recovery of highly vulnerable patients.
arXiv Detail & Related papers (2024-12-08T06:47:23Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
We focus on the ethical principles of beneficence, non-maleficence, autonomy and justice.
We also discuss statistical issues arising from different hold-out set sampling methods.
arXiv Detail & Related papers (2024-06-05T11:42:46Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - Representational Ethical Model Calibration [0.7078141380481605]
Epistem equity is the comparative fidelity of intelligence in decision-making.
No general framework for its quantification, let alone assurance, exists.
We introduce a comprehensive framework for Representational Ethical Model.
arXiv Detail & Related papers (2022-07-25T10:33:39Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Net benefit, calibration, threshold selection, and training objectives
for algorithmic fairness in healthcare [7.500205995624894]
We evaluate the interplay between measures of model performance, fairness, and the expected utility of decision-making.
We conduct an empirical case-study via development of models to estimate the ten-year risk of atherosclerotic cardiovascular disease.
arXiv Detail & Related papers (2022-02-03T23:23:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health.
Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses.
We propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost.
arXiv Detail & Related papers (2020-09-09T23:55:27Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.