論文の概要: Scalable Framework for Classifying AI-Generated Content Across Modalities
- arxiv url: http://arxiv.org/abs/2502.00375v1
- Date: Sat, 01 Feb 2025 09:28:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:48.417117
- Title: Scalable Framework for Classifying AI-Generated Content Across Modalities
- Title(参考訳): モダリティ全体にわたるAI生成コンテンツ分類のためのスケーラブルフレームワーク
- Authors: Anh-Kiet Duong, Petra Gomez-Krämer,
- Abstract要約: 本稿では,知覚ハッシュ,類似度測定,擬似ラベル処理を統合したスケーラブルなフレームワークを提案する。
Defactify4データセットの総合評価は、テキストおよび画像分類タスクにおける競合性能を示す。
これらの結果は、生成AIが進化を続けるにつれて、現実世界のアプリケーションに対するフレームワークの可能性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid growth of generative AI technologies has heightened the importance of effectively distinguishing between human and AI-generated content, as well as classifying outputs from diverse generative models. This paper presents a scalable framework that integrates perceptual hashing, similarity measurement, and pseudo-labeling to address these challenges. Our method enables the incorporation of new generative models without retraining, ensuring adaptability and robustness in dynamic scenarios. Comprehensive evaluations on the Defactify4 dataset demonstrate competitive performance in text and image classification tasks, achieving high accuracy across both distinguishing human and AI-generated content and classifying among generative methods. These results highlight the framework's potential for real-world applications as generative AI continues to evolve. Source codes are publicly available at https://github.com/ffyyytt/defactify4.
- Abstract(参考訳): 生成AI技術の急速な成長は、人間とAIが生成するコンテンツを効果的に区別することの重要性を高め、多様な生成モデルからのアウトプットを分類する。
本稿では,これらの課題に対処するために,知覚ハッシュ,類似度測定,擬似ラベル処理を統合したスケーラブルなフレームワークを提案する。
本手法は, 動的シナリオにおける適応性と堅牢性を確保するため, 再学習を伴わない新しい生成モデルの導入を可能にする。
Defactify4データセットの総合的な評価は、テキストと画像の分類タスクにおける競合性能を示し、人間とAI生成したコンテンツを区別し、生成方法の分類の両方で高い精度を達成する。
これらの結果は、生成AIが進化を続けるにつれて、現実世界のアプリケーションに対するフレームワークの可能性を強調している。
ソースコードはhttps://github.com/ffyytt/defactify4.comで公開されている。
関連論文リスト
- Benchmarking Generative AI Models for Deep Learning Test Input Generation [6.674615464230326]
テスト入力ジェネレータ(TIG)は、ディープラーニング(DL)画像分類器が、トレーニングやテストセットを超えて入力の正確な予測を提供する能力を評価するために不可欠である。
ジェネレーティブAI(GenAI)モデルの最近の進歩は、合成画像の作成と操作のための強力なツールとなった。
我々は、異なるGenAIモデルとTIGをベンチマークして組み合わせ、生成したテスト画像の有効性、効率、品質を評価する。
論文 参考訳(メタデータ) (2024-12-23T15:30:42Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAIは、与えられた入力テキストが人間かAIによって生成されたかを予測するために設計された3重ネットワークコントラスト学習フレームワークである。
提案するフレームワークは,チューリングテストとオーサリングの両タスクにおいて,優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-12T15:44:56Z) - RU-AI: A Large Multimodal Dataset for Machine-Generated Content Detection [11.265512559447986]
本稿では,テキスト,画像,音声中の機械生成コンテンツを堅牢かつ効果的に検出するための大規模マルチモーダルデータセットであるRU-AIを紹介する。
私たちのデータセットは、Flickr8K、COCO、Places205という3つの大きな公開データセットに基づいて構築されています。
その結果,既存のモデルでは,データセットの正確かつ堅牢な検出に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-06-07T12:58:14Z) - Generative Multi-modal Models are Good Class-Incremental Learners [51.5648732517187]
クラス増分学習のための新しい生成型マルチモーダルモデル(GMM)フレームワークを提案する。
提案手法は適応生成モデルを用いて画像のラベルを直接生成する。
Few-shot CIL設定では、現在の最先端のすべてのメソッドに対して少なくとも14%精度が向上し、忘れてはならない。
論文 参考訳(メタデータ) (2024-03-27T09:21:07Z) - An Ensemble Method Based on the Combination of Transformers with
Convolutional Neural Networks to Detect Artificially Generated Text [0.0]
本稿では、畳み込みニューラルネットワーク(CNN)を用いたSci-BERT、DeBERTa、XLNetなどのトランスフォーマーモデルによる分類モデルを提案する。
実験により, アンサンブルアーキテクチャは, 分類のための個別変圧器モデルの性能を上回っていることが示された。
論文 参考訳(メタデータ) (2023-10-26T11:17:03Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
本稿では,AIGC(AIGC)と無線認識を統合し,デジタルコンテンツ制作の質を向上させる。
このフレームワークは、単語の正確な記述が難しいユーザの姿勢を読み取るために、新しいマルチスケール認識技術を採用し、それをスケルトン画像としてAIGCモデルに送信する。
生産プロセスはAIGCモデルの制約としてユーザの姿勢を強制するため、生成されたコンテンツはユーザの要求に適合する。
論文 参考訳(メタデータ) (2023-03-26T04:39:03Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。