論文の概要: Predictive modeling and anomaly detection in large-scale web portals through the CAWAL framework
- arxiv url: http://arxiv.org/abs/2502.00413v1
- Date: Sat, 01 Feb 2025 12:21:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:53.835855
- Title: Predictive modeling and anomaly detection in large-scale web portals through the CAWAL framework
- Title(参考訳): CAWALフレームワークによる大規模Webポータルの予測モデリングと異常検出
- Authors: Ozkan Canay, Umit Kocabicak,
- Abstract要約: 本研究では,CAWALフレームワークを通じて収集されたセッションおよびページビューデータを用いて,高度な予測モデリングとWeb利用マイニングアプリケーションにおける異常検出を行う手法を提案する。
その結果,ユーザの行動やシステムパフォーマンスの指標を詳細に把握し,大規模Webポータルの効率性,信頼性,スケーラビリティを向上させるための信頼性の高いソリューションであることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents an approach that uses session and page view data collected through the CAWAL framework, enriched through specialized processes, for advanced predictive modeling and anomaly detection in web usage mining (WUM) applications. Traditional WUM methods often rely on web server logs, which limit data diversity and quality. Integrating application logs with web analytics, the CAWAL framework creates comprehensive session and page view datasets, providing a more detailed view of user interactions and effectively addressing these limitations. This integration enhances data diversity and quality while eliminating the preprocessing stage required in conventional WUM, leading to greater process efficiency. The enriched datasets, created by cross-integrating session and page view data, were applied to advanced machine learning models, such as Gradient Boosting and Random Forest, which are known for their effectiveness in capturing complex patterns and modeling non-linear relationships. These models achieved over 92% accuracy in predicting user behavior and significantly improved anomaly detection capabilities. The results show that this approach offers detailed insights into user behavior and system performance metrics, making it a reliable solution for improving large-scale web portals' efficiency, reliability, and scalability.
- Abstract(参考訳): 本研究では、Web 利用マイニング(WUM)アプリケーションにおける高度な予測モデリングと異常検出のために、CAWAL フレームワークを通じて収集されたセッションおよびページビューデータを用いて、特殊なプロセスによって強化されたアプローチを提案する。
従来のWUMメソッドは、データの多様性と品質を制限するWebサーバログに依存することが多い。
アプリケーションログとWeb分析を統合することで、CAWALフレームワークは、包括的なセッションとページビューデータセットを生成し、ユーザインタラクションのより詳細なビューを提供し、これらの制限に効果的に対処する。
この統合により、データ多様性と品質が向上し、従来のWUMで必要とされる前処理段階が不要になり、プロセス効率が向上する。
セッションデータとページビューデータを相互統合して作成した強化データセットは、複雑なパターンをキャプチャし、非線形関係をモデル化する効果で知られているGradient BoostingやRandom Forestといった先進的な機械学習モデルに適用された。
これらのモデルでは、ユーザの振る舞いを予測する精度が92%以上向上し、異常検出能力が大幅に向上した。
その結果,ユーザの行動やシステムパフォーマンスの指標を詳細に把握し,大規模Webポータルの効率性,信頼性,スケーラビリティを向上させるための信頼性の高いソリューションであることが示唆された。
関連論文リスト
- Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
本稿では、複雑な時間的データを予測するための高度なフェデレートラーニング(FL)フレームワークを提案し、最近の最先端モデルを改善した。
結果として生じるアーキテクチャは、様々な予測アプリケーションで複雑な時間パターンを扱う能力を大幅に改善します。
提案手法の有効性は,都市部におけるマルチモーダル交通需要予測のためのパブリックデータセットや,Origin-Destination (OD) 行列予測のためのプライベートデータセットなど,実世界の応用に関する広範な実験を通じて実証される。
論文 参考訳(メタデータ) (2025-03-06T15:16:57Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
グラフニューラルネットワーク(GNN)は多くのグラフマイニングタスクで顕著に成功している。
計算とストレージのコストが高いため、大きなグラフにスケールすることは困難です。
既存のモデル単純化作業と互換性のあるプラグアンドプレイモジュールであるノイズマスキング(RMask)を用いたランダムウォークを提案する。
論文 参考訳(メタデータ) (2024-12-19T07:48:14Z) - Visual Data Diagnosis and Debiasing with Concept Graphs [50.84781894621378]
視覚データセットにおける概念共起バイアスの診断と緩和のためのフレームワークであるConBiasを提案する。
このような不均衡を緩和し,下流タスクの性能向上につながることを示す。
論文 参考訳(メタデータ) (2024-09-26T16:59:01Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward Hacking(報酬の過度な最適化)は依然として重要な課題だ。
本稿では,報奨モデル,すなわちInfoRMのためのフレームワークを提案する。
InfoRMの過度な最適化検出機構は、有効であるだけでなく、幅広いデータセットにわたって堅牢であることを示す。
論文 参考訳(メタデータ) (2024-02-14T17:49:07Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Incremental Outlier Detection Modelling Using Streaming Analytics in Finance & Health Care [0.0]
リアルタイムデータの時代において、従来の手法はストリーミング環境の動的な性質に追従するのに苦労することが多い。
本稿では,モデルを一度構築し,リアルタイム環境下で評価するハイブリッドフレームワークを提案する。
我々は、一級サポートベクターマシン(OCSVM)、孤立林適応型スライドウィンドウアプローチ(IForest ASD)、正確な嵐(ES)、角度ベース外乱検出(ABOD)、局所外乱係数(LOF)、Kitsunesオンラインアルゴリズム(KitNet)、K-nearest近隣の8種類の最先端外乱検出モデルを採用した。
論文 参考訳(メタデータ) (2023-05-17T02:30:28Z) - Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning [17.535392299244066]
低解像度の瞬時HD-sEMG画像を用いたジェスチャー認識は、より流動的で自然な筋肉-コンピュータインターフェースを開発するための新たな道を開く。
セッション間とオブジェクト間シナリオ間のデータのばらつきは、大きな課題を示します。
既存のアプローチでは、非常に大きく複雑なConvNetまたは2SRNNベースのドメイン適応手法を使用して、これらのセッション間およびオブジェクト間データのばらつきに起因する分散シフトを近似した。
我々は、軽量なAll-ConvNetとTransfer Learning(TL)を利用した、セッション間およびオブジェクト間ジェスチャー認識の強化のための軽量All-ConvNet+TLモデルを提案する。
論文 参考訳(メタデータ) (2023-05-13T21:47:55Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - A Visual Analytics Approach to Building Logistic Regression Models and
its Application to Health Records [0.0]
本研究では,高次元データセットにおける回帰モデルの生成,評価,適用のためのオープンな統一手法を提案する。
このアプローチは、属性に対する広い相関パノラマを公開することに基づいており、ユーザーは関連する属性を選択して予測モデルを構築して評価することができる。
我々は、コビッド19やその他の人工的および実際の健康記録データの解析に、我々のフレームワークを応用して、UCRegの有効性と効率を実証する。
論文 参考訳(メタデータ) (2022-01-20T19:53:41Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。