論文の概要: Optimizing Feature Selection in Causal Inference: A Three-Stage Computational Framework for Unbiased Estimation
- arxiv url: http://arxiv.org/abs/2502.00501v1
- Date: Sat, 01 Feb 2025 17:47:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:06:04.281420
- Title: Optimizing Feature Selection in Causal Inference: A Three-Stage Computational Framework for Unbiased Estimation
- Title(参考訳): 因果推論における特徴選択の最適化:不偏推定のための3段階計算フレームワーク
- Authors: Tianyu Yang, Md. Noor-E-Alam,
- Abstract要約: 本稿では,変数の所望のサブセットを選択する際の大幅な改善を示す3段階フレームワークを提案する。
提案手法は,様々な環境にまたがる最先端の合成データを用いて評価し,実現可能な時間内に優れた性能を示す。
- 参考スコア(独自算出の注目度): 13.198582304877513
- License:
- Abstract: Feature selection is an important but challenging task in causal inference for obtaining unbiased estimates of causal quantities. Properly selected features in causal inference not only significantly reduce the time required to implement a matching algorithm but, more importantly, can also reduce the bias and variance when estimating causal quantities. When feature selection techniques are applied in causal inference, the crucial criterion is to select variables that, when used for matching, can achieve an unbiased and robust estimation of causal quantities. Recent research suggests that balancing only on treatment-associated variables introduces bias while balancing on spurious variables increases variance. To address this issue, we propose an enhanced three-stage framework that shows a significant improvement in selecting the desired subset of variables compared to the existing state-of-the-art feature selection framework for causal inference, resulting in lower bias and variance in estimating the causal quantity. We evaluated our proposed framework using a state-of-the-art synthetic data across various settings and observed superior performance within a feasible computation time, ensuring scalability for large-scale datasets. Finally, to demonstrate the applicability of our proposed methodology using large-scale real-world data, we evaluated an important US healthcare policy related to the opioid epidemic crisis: whether opioid use disorder has a causal relationship with suicidal behavior.
- Abstract(参考訳): 特徴選択は因果量の偏りのない推定値を得るための因果推論において重要であるが難しい課題である。
因果推論で適切に選択された特徴は、マッチングアルゴリズムを実装するのに要する時間を著しく削減するだけでなく、より重要なことに、因果量の推定時にバイアスや分散を減少させることもできる。
特徴選択技術が因果推論に適用される場合、重要な基準は、マッチングに使用される変数を選択することである。
近年の研究では、処理関連変数のみのバランスがバイアスをもたらす一方で、スプリアス変数のバランスがばらつきを増すことが示唆されている。
この問題に対処するため,既存の因果推論のための特徴選択フレームワークと比較して変数の所望のサブセットを選択することの大幅な改善を示す3段階フレームワークを提案する。
提案したフレームワークは,様々な設定にまたがって最先端の合成データを用いて評価し,計算時間内で優れた性能を示し,大規模データセットのスケーラビリティを確保した。
最後に, 大規模実世界のデータを用いた提案手法の適用性を示すため, オピオイドの流行に伴う重要な医療政策として, オピオイド使用障害が自殺行動と因果関係を持つか否かを検証した。
関連論文リスト
- Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables [15.105594376616253]
非実験データから因果効果を推定することは、科学の多くの分野における根本的な問題である。
非パラメトリック因果効果推定における共変量選択のための新しい局所学習手法を提案する。
我々は、合成データと実世界のデータの両方に関する広範な実験を通じて、アルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-25T12:08:54Z) - Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Interval Estimation of Coefficients in Penalized Regression Models of Insurance Data [3.5637073151604093]
ツイーディー指数分散ファミリーは、保険の損失をモデル化するために多くの人々の間で人気がある。
内在変数を記述する最も重要な特徴の信頼性(推論)を得るためには、しばしば重要である。
論文 参考訳(メタデータ) (2024-10-01T18:57:18Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
本研究は、最適介入を特定するための因果的アクティブラーニング戦略を開発し、分布のインターベンショナル平均と所望の目標平均との相違によって測定した。
本研究では、Perturb-CITE-seq実験から得られた合成データと単細胞転写データの両方にアプローチを適用し、特定の細胞状態遷移を誘導する最適な摂動を同定する。
論文 参考訳(メタデータ) (2022-09-10T20:40:30Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - A Two-Stage Feature Selection Approach for Robust Evaluation of
Treatment Effects in High-Dimensional Observational Data [1.4710887888397084]
我々は,OAENet(Outcome Adaptive Elastic Net)と呼ばれる新しい2段階特徴選択手法を提案する。
OAENetは、マッチング技術を用いて堅牢な因果推論決定を行うように設計されている。
シミュレーションデータに関する数値実験により、OAENetは最先端の手法を大きく上回っていることが示された。
論文 参考訳(メタデータ) (2021-11-27T02:54:30Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
因果推論の最先端の手法は、欠落した値を考慮していない。
欠落したデータは、適応された未確立仮説を必要とする。
欠落した値に適応した変分オートエンコーダを通じて分布を学習する潜在的共同設立者について考察する。
論文 参考訳(メタデータ) (2020-02-25T12:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。