論文の概要: Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2502.00550v1
- Date: Sat, 01 Feb 2025 20:38:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:27.294210
- Title: Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
- Title(参考訳): パラメトリック部分微分方程式に対するラプラスニューラル演算子による多重忠実度予測と不確かさの定量化
- Authors: Haoyang Zheng, Guang Lin,
- Abstract要約: Laplace Neural Operators (LNOs) は、科学機械学習において有望なアプローチとして登場した。
低忠実度ベースモデルと並列線形/非線形HF補正と動的相互重み付けを組み合わせた多忠実Laplace Neural Operator (MF-LNOs)を提案する。
これにより、LFデータセットとHFデータセットの相関を利用して、興味のある量の正確な推測を行うことができる。
- 参考スコア(独自算出の注目度): 6.03891813540831
- License:
- Abstract: Laplace Neural Operators (LNOs) have recently emerged as a promising approach in scientific machine learning due to the ability to learn nonlinear maps between functional spaces. However, this framework often requires substantial amounts of high-fidelity (HF) training data, which is often prohibitively expensive to acquire. To address this, we propose multi-fidelity Laplace Neural Operators (MF-LNOs), which combine a low-fidelity (LF) base model with parallel linear/nonlinear HF correctors and dynamic inter-fidelity weighting. This allows us to exploit correlations between LF and HF datasets and achieve accurate inference of quantities of interest even with sparse HF data. We further incorporate a modified replica exchange stochastic gradient Langevin algorithm, which enables a more effective posterior distribution estimation and uncertainty quantification in model predictions. Extensive validation across four canonical dynamical systems (the Lorenz system, Duffing oscillator, Burgers equation, and Brusselator reaction-diffusion system) demonstrates the framework's effectiveness. The results show significant improvements, with testing losses reduced by 40% to 80% compared to traditional approaches. This validates MF-LNO as a versatile tool for surrogate modeling in parametric PDEs, offering significant improvements in data efficiency and uncertainty-aware prediction.
- Abstract(参考訳): Laplace Neural Operators (LNOs) は、関数空間間の非線形マップを学習する能力のため、科学機械学習において有望なアプローチとして最近登場した。
しかし、このフレームワークは、しばしばかなりの量の高忠実度(HF)トレーニングデータを必要とする。
そこで本研究では,低忠実度(LF)ベースモデルと並列線形・非線形HF補正器,動的相互重み付けを組み合わせた多忠実Laplace Neural Operator (MF-LNOs)を提案する。
これにより、LFデータセットとHFデータセットの相関を利用して、スパースなHFデータであっても、正確な関心量の推定が可能になる。
さらに、モデル予測においてより効果的な後部分布推定と不確実性定量化を可能にする改良された複製交換確率勾配ランゲヴィンアルゴリズムを組み込んだ。
4つの標準力学系(ローレンツ系、ダッフィング振動子、バーガース方程式、ブルッセルター反応拡散系)の広範な検証は、このフレームワークの有効性を示している。
テストの損失は従来のアプローチに比べて40%から80%削減された。
これはMF-LNOをパラメトリックPDEにおけるサロゲートモデリングの汎用ツールとして検証し、データ効率と不確実性を考慮した予測を大幅に改善する。
関連論文リスト
- Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
本稿では,ニューラル演算子の出力関数空間上の確率分布を学習するフレームワークである確率論的ニューラル演算子(PNO)を紹介する。
PNOは、厳密な適切なスコアリングルールに基づく生成モデリングにより、ニューラル演算子を拡張し、不確実性情報をトレーニングプロセスに直接統合する。
論文 参考訳(メタデータ) (2025-02-18T14:42:11Z) - Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
本稿では,MDPの線形性を維持する新しいDGMフレームワークであるBellman Diffusionを紹介する。
この結果から,ベルマン拡散は分布RLタスクにおける従来のヒストグラムベースベースラインよりも1.5倍高速に収束し,精度の高い画像生成装置であることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:53:23Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Data-driven Nonlinear Parametric Model Order Reduction Framework using
Deep Hierarchical Variational Autoencoder [5.521324490427243]
深層ニューラルネットワークを用いたデータ駆動パラメトリックモデルオーダー削減(MOR)手法を提案する。
LSH-VAEは、非線形力学系のパラメトリックに対して、かなりの数の自由度で非線形MORを実行することができる。
論文 参考訳(メタデータ) (2023-07-10T02:44:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Active Learning with Multifidelity Modeling for Efficient Rare Event
Simulation [0.0]
希少事象の効率的に推定することを強調する多忠実度モデリングを用いた能動的学習フレームワークを提案する。
我々のフレームワークは、低忠実度(LF)予測をHF推論補正と融合させ、修正されたLF予測をフィルタリングして、高忠実度モデルを呼び出すかどうかを決定する。
障害確率を小さくする際のロバスト性を改善するため,HFモデルをいつ呼び出すかを決定する動的能動学習関数を提案する。
論文 参考訳(メタデータ) (2021-06-25T17:44:28Z) - Transfer Learning on Multi-Fidelity Data [0.0]
ニューラルネットワーク(NNs)は、しばしば複素系のダイナミクスを記述する部分微分方程式(PDEs)のサロゲートまたはエミュレータとして用いられる。
私たちは、トランスファーラーニングを用いた深層畳み込みNN(CNN)のトレーニングのためにデータ生成コストを削減するために、マルチファイダリティシミュレーションに依存しています。
数値実験により,比較的多数の低忠実度データと少ない高忠実度データとを混合することにより,計算速度と予測精度の最適バランスが得られた。
論文 参考訳(メタデータ) (2021-04-29T00:06:19Z) - Training Deep Energy-Based Models with f-Divergence Minimization [113.97274898282343]
深部エネルギーベースモデル(EBM)は分布パラメトリゼーションにおいて非常に柔軟であるが、計算的に困難である。
所望のf偏差を用いてEMMを訓練するための、f-EBMと呼ばれる一般的な変分フレームワークを提案する。
実験の結果,F-EBMは対照的なばらつきよりも優れており,KL以外のf-divergencesを用いたEBMの訓練の利点も示された。
論文 参考訳(メタデータ) (2020-03-06T23:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。