論文の概要: Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators
- arxiv url: http://arxiv.org/abs/2410.20331v1
- Date: Sun, 27 Oct 2024 04:17:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:48.747760
- Title: Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators
- Title(参考訳): 組込み非局所演算子回帰(ENOR):非局所演算子学習におけるモデル誤差の定量化
- Authors: Yiming Fan, Habib Najm, Yue Yu, Stewart Silling, Marta D'Elia,
- Abstract要約: 本研究では,非局所的同化代理モデルとその構造モデル誤差を学習するための新しい枠組みを提案する。
このフレームワークは、長期シミュレーションにおける均質化材料応答予測のための離散性適応不確実性定量化を提供する。
- 参考スコア(独自算出の注目度): 8.585650361148558
- License:
- Abstract: Nonlocal, integral operators have become an efficient surrogate for bottom-up homogenization, due to their ability to represent long-range dependence and multiscale effects. However, the nonlocal homogenized model has unavoidable discrepancy from the microscale model. Such errors accumulate and propagate in long-term simulations, making the resultant prediction unreliable. To develop a robust and reliable bottom-up homogenization framework, we propose a new framework, which we coin Embedded Nonlocal Operator Regression (ENOR), to learn a nonlocal homogenized surrogate model and its structural model error. This framework provides discrepancy-adaptive uncertainty quantification for homogenized material response predictions in long-term simulations. The method is built on Nonlocal Operator Regression (NOR), an optimization-based nonlocal kernel learning approach, together with an embedded model error term in the trainable kernel. Then, Bayesian inference is employed to infer the model error term parameters together with the kernel parameters. To make the problem computationally feasible, we use a multilevel delayed acceptance Markov chain Monte Carlo (MLDA-MCMC) method, enabling efficient Bayesian model calibration and model error estimation. We apply this technique to predict long-term wave propagation in a heterogeneous one-dimensional bar, and compare its performance with additive noise models. Owing to its ability to capture model error, the learned ENOR achieves improved estimation of posterior predictive uncertainty.
- Abstract(参考訳): 非局所的な積分作用素は、長距離依存とマルチスケール効果を表現する能力のため、ボトムアップホモジェナイゼーションの効率的なサロゲートとなっている。
しかし、非局所的均質化モデルは、マイクロスケールモデルと不可避の相違がある。
このようなエラーは長期シミュレーションで蓄積され伝播し、その結果の予測は信頼できない。
強靭で信頼性の高いボトムアップ均質化フレームワークを開発するために,非局所的同質化サロゲートモデルとその構造モデル誤差を学習するための組込み非局所演算子回帰(ENOR)という新しいフレームワークを提案する。
このフレームワークは、長期シミュレーションにおける均質化材料応答予測のための離散性適応不確実性定量化を提供する。
この方法は、最適化に基づく非ローカルカーネル学習アプローチであるNonlocal Operator Regression (NOR) と、トレーニング可能なカーネルに埋め込まれたモデルエラー項に基づいて構築される。
次に、ベイジアン推論を用いて、モデルエラー項パラメータとカーネルパラメータを推論する。
この問題を計算的に実現するために,マルチレベル遅延型マルコフ連鎖モンテカルロ (MLDA-MCMC) 法を用いてベイズモデルのキャリブレーションとモデル誤差推定を行う。
この手法を異種一次元バーにおける長期波動伝搬予測に適用し,その性能を付加雑音モデルと比較する。
学習したENORは、モデルエラーを捕捉する能力のため、後続予測の不確実性の推定を改善する。
関連論文リスト
- Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Model orthogonalization and Bayesian forecast mixing via Principal Component Analysis [0.0]
多くの場合、混合プロセスで使用されるモデルは類似している。
このような類似または冗長なモデルが存在することは、結果の誤解釈と予測性能の劣化をもたらす可能性がある。
提案するベイズモデル組合せフレームワークにモデル化を加えることで,予測精度が向上し,不確かさの定量化性能に優れることを示す。
論文 参考訳(メタデータ) (2024-05-17T15:01:29Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
ブートストラップに基づく逐次しきい値最小二乗推定器による雑音に対する精度と頑健性の観点から経験的成功を示す。
このブートストラップに基づくアンサンブル手法は,誤差率の指数収束率で,確率的に正しい可変選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-30T04:07:59Z) - Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning
Framework of Nonlocal Models with Uncertainty Quantification [4.705624984585247]
ミクロスケールの力学と相互作用が世界的挙動に影響を及ぼす異種材料をモデル化する問題を考える。
非局所モデルを用いた材料応答予測における不確実性(UQ)のためのベイズフレームワークを開発する。
この研究は、ホモジェナイゼーションの文脈における非局所モデル差の統計的特徴付けへの第一歩である。
論文 参考訳(メタデータ) (2022-10-06T22:37:59Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
私たちはMEDIDAというフレームワークを紹介します: 解釈可能性とデータ同化を伴うモデルエラー発見。
MEDIDAでは、まず、観測状態と予測状態の差からモデル誤差を推定する。
観測結果がノイズである場合、まず、アンサンブルカルマンフィルタ(EnKF)のようなデータ同化手法を用いて、システムのノイズフリー解析状態を提供する。
最後に、レバレンスベクトルマシン(RVM)のような方程式発見手法、すなわちスパーシィプロモーティングベイズ法を用いて、解釈可能でパシモニアスでクローズドな解を同定する。
論文 参考訳(メタデータ) (2021-10-01T17:19:28Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。