論文の概要: Privacy Preserving Properties of Vision Classifiers
- arxiv url: http://arxiv.org/abs/2502.00760v1
- Date: Sun, 02 Feb 2025 11:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:21.142621
- Title: Privacy Preserving Properties of Vision Classifiers
- Title(参考訳): 視覚分類器のプライバシー保護特性
- Authors: Pirzada Suhail, Amit Sethi,
- Abstract要約: 視覚分類器のプライバシ保護特性を多種多様なアーキテクチャで評価する。
本分析では,入力表現や特徴抽出機構,重み構造といったアーキテクチャの違いが,プライバシのリスクにどのように影響するかを強調した。
我々の発見は、セキュアでプライバシーに配慮した機械学習システムの設計に関する実用的な洞察を提供する。
- 参考スコア(独自算出の注目度): 3.004632712148892
- License:
- Abstract: Vision classifiers are often trained on proprietary datasets containing sensitive information, yet the models themselves are frequently shared openly under the privacy-preserving assumption. Although these models are assumed to protect sensitive information in their training data, the extent to which this assumption holds for different architectures remains unexplored. This assumption is challenged by inversion attacks which attempt to reconstruct training data from model weights, exposing significant privacy vulnerabilities. In this study, we systematically evaluate the privacy-preserving properties of vision classifiers across diverse architectures, including Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Vision Transformers (ViTs). Using network inversion-based reconstruction techniques, we assess the extent to which these architectures memorize and reveal training data, quantifying the relative ease of reconstruction across models. Our analysis highlights how architectural differences, such as input representation, feature extraction mechanisms, and weight structures, influence privacy risks. By comparing these architectures, we identify which are more resilient to inversion attacks and examine the trade-offs between model performance and privacy preservation, contributing to the development of secure and privacy-respecting machine learning models for sensitive applications. Our findings provide actionable insights into the design of secure and privacy-aware machine learning systems, emphasizing the importance of evaluating architectural decisions in sensitive applications involving proprietary or personal data.
- Abstract(参考訳): 視覚分類器は機密情報を含むプロプライエタリなデータセットで訓練されることが多いが、モデルそのものはプライバシ保護の前提の下でオープンに共有されることが多い。
これらのモデルは、トレーニングデータの機密情報を保護していると仮定されているが、この仮定が異なるアーキテクチャに対して持つ範囲は、まだ解明されていない。
この仮定は、モデルの重みからトレーニングデータを再構築し、重大なプライバシー上の脆弱性を露呈しようとする逆攻撃によって解決される。
本研究では,MLP(Multi-Layer Perceptrons),CNN(Convolutional Neural Networks),ViT(Vision Transformers)など,さまざまなアーキテクチャを対象とした視覚分類器のプライバシ保護特性を体系的に評価する。
ネットワークインバージョンに基づく再構成手法を用いて、これらのアーキテクチャがトレーニングデータを記憶し、明らかにする範囲を評価し、モデル間の相対的再構成の容易さを定量化する。
本分析では,入力表現や特徴抽出機構,重み構造といったアーキテクチャの違いが,プライバシのリスクにどのように影響するかを強調した。
これらのアーキテクチャを比較することで、攻撃に対してより回復力のあるものを特定し、モデルパフォーマンスとプライバシ保護の間のトレードオフを検証し、センシティブなアプリケーションのためのセキュアでプライバシーを尊重する機械学習モデルの開発に寄与する。
本研究は,プロプライエタリデータや個人データを含むセンシティブなアプリケーションにおけるアーキテクチャ決定を評価することの重要性を強調し,セキュアでプライバシに配慮した機械学習システムの設計に関する実用的な知見を提供する。
関連論文リスト
- Shortcut Learning Susceptibility in Vision Classifiers [3.004632712148892]
ショートカット学習は、機械学習モデルが意味のある特徴をキャプチャする代わりに、データの急激な相関を利用する場所である。
この現象は、視覚、自然言語処理、音声認識など、さまざまな機械学習アプリケーションで広く利用されている。
クラスラベルと位置相関するデータセットに意図的にショートカットを導入することで,これらのアーキテクチャを体系的に評価する。
論文 参考訳(メタデータ) (2025-02-13T10:25:52Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
この研究は、データ共有とモデル公開の間、画像データのプライバシーを同時に保護する包括的なプライバシー保護フレームワークのパイオニアだ。
本稿では、生成機械学習モデルを用いて属性レベルで画像情報を修正するインタラクティブな画像プライバシー保護フレームワークを提案する。
本フレームワークでは、画像中の属性情報を保護する差分プライバシー拡散モデルと、修正された画像データセット上でトレーニングされたモデルの効率的な更新を行う特徴未学習アルゴリズムの2つのモジュールをインスタンス化する。
論文 参考訳(メタデータ) (2024-09-05T07:55:55Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Visual Privacy Auditing with Diffusion Models [52.866433097406656]
本稿では,拡散モデル(DM)に基づくリコンストラクション攻撃を提案する。
本研究では,(1)実世界のデータ漏洩が再建の成功に大きく影響すること,(2)現在のリビルド境界がデータ先行によるリスクをうまくモデル化していないこと,(3)DMは,プライバシー漏洩を可視化するための効果的な監査ツールとして機能すること,を示す。
論文 参考訳(メタデータ) (2024-03-12T12:18:55Z) - BrainLeaks: On the Privacy-Preserving Properties of Neuromorphic Architectures against Model Inversion Attacks [3.4673556247932225]
従来の人工知能ニューラルネットワーク(ANN)は、機密データを漏洩する可能性のあるいくつかの攻撃に対して脆弱であることがわかった。
我々の研究は、スパイキングニューラルネットワーク(SNN)の差別化不可能な側面が、固有のプライバシー保護特性をもたらすという直感に動機づけられている。
我々は、SNNをターゲットとした、包括的に設計された新しい逆攻撃戦略を開発する。
論文 参考訳(メタデータ) (2024-02-01T03:16:40Z) - Deep Variational Privacy Funnel: General Modeling with Applications in
Face Recognition [3.351714665243138]
エンド・ツー・エンド・トレーニング・フレームワークを用いたプライバシー保護表現学習手法を開発した。
我々はこのモデルを最先端の顔認識システムに適用する。
論文 参考訳(メタデータ) (2024-01-26T11:32:53Z) - Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer Inputs of Language Models in Federated Learning [24.059033969435973]
本稿では,現代言語モデルのアーキテクチャの脆弱性を狙う2段階のプライバシ攻撃戦略を提案する。
比較実験は、様々なデータセットやシナリオで優れた攻撃性能を示す。
私たちは、大きな言語モデルの設計において、これらの潜在的なプライバシーリスクを認識し、対処するようコミュニティに呼びかけます。
論文 参考訳(メタデータ) (2023-12-10T01:19:59Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
本稿では,Neural Radiance Fields(NeRF)モデルの生成機能に対して,ユーザのプライバシを保護する革新的な手法を提案する。
我々の新しい中毒攻撃法は、人間の目では認識できないが、NeRFが正確に3Dシーンを再構築する能力を損なうのに十分強力である観察ビューの変化を誘発する。
我々は、高品質の画像を含む29の現実世界シーンからなる2つの共通のNeRFベンチマークデータセットに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2023-10-04T19:35:56Z) - How Does a Deep Learning Model Architecture Impact Its Privacy? A
Comprehensive Study of Privacy Attacks on CNNs and Transformers [18.27174440444256]
プライバシー上の懸念は、トレーニングデータから機密情報が漏洩する可能性があるためである。
最近の研究によると、ディープラーニングモデルはさまざまなプライバシー攻撃に弱い。
論文 参考訳(メタデータ) (2022-10-20T06:44:37Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。