Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
- URL: http://arxiv.org/abs/2502.00798v1
- Date: Sun, 02 Feb 2025 13:37:56 GMT
- Title: Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
- Authors: Qiangqiang Gu, Shishir Kumar Pandey,
- Abstract summary: We present an efficient approach to calculate the phonon-assisted optical absorption in semiconductors with $ab$ $initio$ accuracy.
We demonstrate its efficacy by calculating the temperature-dependent optical absorption spectra and band gap renormalization of Si and GaAs.
Our results show excellent agreement with experimental data, capturing both indirect and direct absorption processes.
- Score: 0.0
- License:
- Abstract: Phonon-assisted optical absorption in semiconductors is crucial for understanding and optimizing optoelectronic devices, yet its accurate simulation remains a significant challenge in computational materials science. We present an efficient approach that combines deep learning tight-binding (TB) and potential models to efficiently calculate the phonon-assisted optical absorption in semiconductors with $ab$ $initio$ accuracy. Our strategy enables efficient sampling of atomic configurations through molecular dynamics and rapid computation of electronic structure and optical properties from the TB models. We demonstrate its efficacy by calculating the temperature-dependent optical absorption spectra and band gap renormalization of Si and GaAs due to electron-phonon coupling over a temperature range of 100-400 K. Our results show excellent agreement with experimental data, capturing both indirect and direct absorption processes, including subtle features like the Urbach tail. This approach offers a powerful tool for studying complex materials with high accuracy and efficiency, paving the way for high-throughput screening of optoelectronic materials.
Related papers
- Performance analysis of different photon-mediated entanglement generation schemes under optical dephasing and spectral diffusion [6.7626967426943745]
Solid-state quantum emitters offer qubit systems that integrate well with chip-scale photonic and electronic devices.
We compare the performance of three common photon-mediated entanglement schemes under realistic noise for solid-state quantum emitters.
arXiv Detail & Related papers (2024-12-13T09:02:18Z) - A framework for extracting the rates of photophysical processes from biexponentially decaying photon emission data [0.0]
We develop a model that includes trapping and release of carriers by optically inactive states.
The model also allows determination of likelihood intervals for all the transition rates involved in the emission dynamics.
We demonstrate the value of this model by applying it to time resolved photoluminescence measurements of CdSeTe/CdS heterostructures.
arXiv Detail & Related papers (2024-08-22T08:14:51Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - On-demand indistinguishable and entangled photons using tailored cavity
designs [0.0]
We focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability.
We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement.
We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement.
arXiv Detail & Related papers (2023-03-24T09:26:03Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Ab initio simulation of laser-induced electronic and vibrational
coherence [0.0]
We show that ensemble-averaging with initial configurations from a nuclear quantum distribution remedies many shortcomings of single-trajectory RT-TDDFT+Ehrenfest.
The explicit inclusion of a time-dependent pulse in the simulations makes this method a prime advance for first-principles studies of coherent nonlinear spectroscopy.
arXiv Detail & Related papers (2021-12-21T10:30:41Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - The NV centre coupled to an ultra-small mode volume cavity: a high
efficiency source of indistinguishable photons at 200 K [0.15749416770494706]
atom-like systems burdened by phonon sidebands and broadening due to surface charges.
We design a silicon nitride cavity that allows 99 % efficient extraction of photons at 200 K.
Our work points towards scalable fabrication of non-cryogenic atom-like efficient sources of indistinguishable photons.
arXiv Detail & Related papers (2020-05-27T16:36:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.